Learning Under Uncertainty

$>$ We want to learn models from data.

$$
P(\text { model } \mid \text { data })=\frac{P(\text { data } \mid \text { model }) \times P(\text { model })}{P(\text { data })}
$$

$>$ The likelihood, P (data \mid model $)$, is the probability that this model would have produced this data.
$>$ The prior, $P($ model $)$, encodes the learning bias

Bayesian Leaning of Probabilities

Suppose there are two outcomes A and $\neg A$. We would like to learn the probability of A given some data.
$>$ We can treat the probability of A as a real-valued random variable on the interval $[0,1]$, called probA.

$$
P(\text { prob } A=p \mid \text { data })=\frac{P(\text { data } \mid \text { prob } A=p) \times P(\text { prob } A=p)}{P(\text { data })}
$$

$>$ Suppose the data is a sequence of $n A$'s out of independent m trials,

$$
P(\text { data } \mid \text { prob } A=p)=p^{n} \times(1-p)^{m-n}
$$

$>$ Uniform prior: $P(p r o b A=p)=1$ for all $p \in[0,1]$.

Posterior Probabilities for Different Data

MAP model

The maximum a posteriori probability (MAP) model is the model that maximizes $P($ model $\mid d a t a)$. That is, it maximizes:

$$
P(\text { data } \mid \text { model }) \times P(\text { model })
$$

Thus it minimizes:

$$
(-\log P(\text { data } \mid \text { model }))+(-\log P(\text { model }))
$$

which is the number of bits to send the data given the model plus the number of bits to send the model.

Information theory overview

> A bit is a binary digit.
>1 bit can distinguish 2 items
$>k$ bits can distinguish 2^{k} items
> n items can be distinguished using $\log _{2} n$ bits

- Can you do better?

Information and Probability

Let's design a code to distinguish elements of $\{a, b, c, d\}$ with

$$
P(a)=\frac{1}{2}, P(b)=\frac{1}{4}, P(c)=\frac{1}{8}, P(d)=\frac{1}{8}
$$

Consider the code:

$$
\begin{array}{llllllll}
a & 0 & & b & 10 & c & 110 & d
\end{array}
$$

This code sometimes uses 1 bit and sometimes uses 3 bits.
On average, it uses

$$
\begin{aligned}
& P(a) \times 1+P(b) \times 2+P(c) \times 3+P(d) \times 3 \\
& \quad=\frac{1}{2}+\frac{2}{4}+\frac{3}{8}+\frac{3}{8}=1 \frac{3}{4} \text { bits } .
\end{aligned}
$$

The string aacabbda has code 00110010101110.

Information Content

$>$ To identify x, you need $-\log _{2} P(x)$ bits.
$>$ If you have a distribution over a set and want to a identify a member, you need the expected number of bits:

$$
\sum_{x}-P(x) \times \log _{2} P(x)
$$

This is the information content or entropy of the distribution.

The expected number of bits it takes to describe a distribution given evidence e :

$$
I(e)=\sum_{x}-P(x \mid e) \times \log _{2} P(x \mid e)
$$

Information Gain

If you have a test that can distinguish the cases where α is true from the cases where α is false, the information gain from this test is:

$$
I(\text { true })-(P(\alpha) \times I(\alpha)+P(\neg \alpha) \times I(\neg \alpha))
$$

$>I($ true $)$ is the expected number of bits needed before the test
$>P(\alpha) \times I(\alpha)+P(\neg \alpha) \times I(\neg \alpha)$ is the expected number of bits after the test.

Averaging Over Models

Idea: Rather than choosing the most likely model, average over all models, weighted by their posterior probabilities given the data.
$>$ If you have observed $n A$'s out of m trials
$>$ the most likely value (MAP) is $\frac{n}{m}$
$>$ the expected value is $\frac{n+1}{m+2}$

Learning a Belief Network

$>$ If you
∇ know the structure
> have observed all of the variables
$>$ have no missing data
$>$ you can learn each conditional probability separately.

Learning belief network example

Model

\rightarrow Probabilities

$P(A)$
$P(B)$
$P(E \mid A, B)$
$P(C \mid E)$
$P(D \mid E)$

Learning conditional probabilities

Each conditional probability distribution can be learned separately:
$>$ For example:

$$
\begin{aligned}
& P(E=t \mid A=t \wedge B=f) \\
& \quad=\frac{(\# \text { examples: } E=t \wedge A=t \wedge B=f)+m_{1}}{(\# \text { examples: } A=t \wedge B=f)+m}
\end{aligned}
$$

where m_{1} and m reflect our prior knowledge.
There is a problem when there are many parents to a node as then there is little data for each probability estimate.

Unobserved Variables

$>$ What if we had only observed values for A, B, C ?

A	B	C
t	f	t
f	t	t
t	t	f
	\cdots	

EM Algorithm

Augmented Data

A	B	C	H
t	f	t	t
f	t	t	f
t	t	f	t
		\cdots	

Probabilities

$P(A)$
$P(H \mid A)$
$P(B \mid H)$
$P(C \mid H)$

EM Algorithm

$>$ Repeat the following two steps:
$>$ E-step give the expected number of data points for the unobserved variables based on the given probabilty distribution.

M-step infer the (maximun likelihood) probabilities from the data. This is the same as the full observable case.
> Start either with made-up data or made-up probabilities.
$>$ EM will converge to a local maxima.

Example Data

A	B	C	Count
t	t	t	143
t	t	f	329
t	f	t	57
t	f	f	271
f	t	t	87
f	t	f	66
f	f	t	23
f	f	f	24

Naive Bayesian Classifier

Unsupervised Learning

$>$ Given a collection of data, find natural classifications.
> This can be seen as the naive Bayesian classifier with the classification unobserved.
$>$ EM can be used to learn classification.

Bayesian learning of decision trees

$$
P(\text { model } \mid \text { data })=\frac{P(\text { data } \mid \text { model }) \times P(\text { model })}{P(\text { data }) .}
$$

A model here is a decision tree

- We allow for decision trees with probabilities at the leaves

A bigger decision tree can always fit the data better
> P (model) lets us encode a preference for smaller decision trees.

Data for decision tree learning

att $_{1}$	att $_{2}$	class	count
t	t	c 1	10
t	t	c 2	3
t	f	c 1	5
t	f	c 2	12
f	t	c 1	7
f	t	c 2	14
f	f	c 1	8
f	f	c 2	1

Probabilities From Experts

> Bayes rule lets us combine expert knowledge with data

$$
P(\text { model } \mid \text { data })=\frac{P(\text { data } \mid \text { model }) \times P(\text { model })}{P(\text { data })}
$$

$>$ The experts prior knowledge of the model (i.e., $P($ model $)$) can be expressed as a pair $\langle n, m\rangle$ that can be interpreted as though they had observed $n A$'s out of m trials.
$>$ This estimate can be combined with data.
$>$ Estimates from multiple experts can be combined together.

