Learning Under Uncertainty

We want to learn models from data.

$$P(model|data) = \frac{P(data|model) \times P(model)}{P(data).}$$

- The likelihood, P(data|model), is the probability that this model would have produced this data.
- \triangleright The prior, P(model), encodes the learning bias

Bayesian Leaning of Probabilities

- Suppose there are two outcomes A and $\neg A$. We would like to learn the probability of A given some data.
- We can treat the probability of *A* as a real-valued random variable on the interval [0, 1], called *probA*.

$$P(probA=p|data) = \frac{P(data|probA=p) \times P(probA=p)}{P(data)}$$

- Suppose the data is a sequence of *n A*'s out of independent *m* trials,
 - $P(data|probA=p) = p^{n} \times (1-p)^{m-n}$
- ➤ Uniform prior: P(probA=p) = 1 for all $p \in [0, 1]$.

Posterior Probabilities for Different Data

MAP model

The maximum a posteriori probability (MAP) model is the model that maximizes P(model|data). That is, it maximizes:

$$P(data|model) \times P(model)$$

Thus it minimizes:

$$(-\log P(data|model)) + (-\log P(model))$$

which is the number of bits to send the data given the model plus the number of bits to send the model.

Information theory overview

- A bit is a binary digit.
- ➤ 1 bit can distinguish 2 items
- \triangleright k bits can distinguish 2^k items
- \triangleright *n* items can be distinguished using $\log_2 n$ bits
- **Can you do better?**

Information and Probability

Let's design a code to distinguish elements of $\{a, b, c, d\}$ with

Let's design a code to distinguish elements of
$$\{a, b, a\}$$

 $P(a) = \frac{1}{2}, P(b) = \frac{1}{4}, P(c) = \frac{1}{8}, P(d) = \frac{1}{8}$

Consider the code:
$$a \quad 0 \quad b \quad 10 \quad c \quad 110 \quad d \quad 111$$

This code sometimes uses 1 bit and sometimes uses 3 bits.

On average, it uses

$$P(a) \times 1 + P(b) \times 2 + P(c) \times 3 + P(d) \times 3$$

$$= \frac{1}{2} + \frac{2}{4} + \frac{3}{8} + \frac{3}{8} = 1\frac{3}{4} \text{ bits.}$$

The string aacabbda has code 00110010101110.

Information Content

- \triangleright To identify x, you need $-\log_2 P(x)$ bits.
- If you have a distribution over a set and want to a identify a member, you need the expected number of bits:

$$\sum_{x} -P(x) \times \log_2 P(x).$$

This is the information content or entropy of the distribution.

The expected number of bits it takes to describe a distribution given evidence *e*:

$$I(e) = \sum -P(x|e) \times \log_2 P(x|e).$$

Information Gain

If you have a test that can distinguish the cases where α is true from the cases where α is false, the information gain from this test is:

$$I(true) - (P(\alpha) \times I(\alpha) + P(\neg \alpha) \times I(\neg \alpha)).$$

- ➤ *I(true)* is the expected number of bits needed before the test
- $P(\alpha) \times I(\alpha) + P(\neg \alpha) \times I(\neg \alpha)$ is the expected number of bits after the test.

Averaging Over Models

- Idea: Rather than choosing the most likely model, average over all models, weighted by their posterior probabilities given the data.
- \triangleright If you have observed n A's out of m trials
 - \rightarrow the most likely value (MAP) is $\frac{n}{m}$
 - \rightarrow the expected value is $\frac{n+1}{m+2}$

Learning a Belief Network

- If you
 - > know the structure
 - > have observed all of the variables
 - > have no missing data
- > you can learn each conditional probability separately.

Learning belief network example

Model

Data

→ Probabilities

P(A) P(B) P(E|A,B) P(C|E) P(D|E)

Learning conditional probabilities

- Each conditional probability distribution can be learned separately:
- For example:

$$P(E = t | A = t \land B = f)$$

$$= \frac{(\text{\#examples: } E = t \land A = t \land B = f) + m_1}{(\text{\#examples: } A = t \land B = f) + m}$$

where m_1 and m reflect our prior knowledge.

There is a problem when there are many parents to a node as then there is little data for each probability estimate.

Unobserved Variables

What if we had only observed values for *A*, *B*, *C*?

A	В	C
t	f	t
f	t	t
t	t	f

EM Algorithm

Augmented Data

$oxedsymbol{A}$	В	C	Н		
$\int t$	f	t	t		
f	t	t	f		
t	t	f	t		
• • •					

Probabilities

EM Algorithm

- Repeat the following two steps:
 - E-step give the expected number of data points for the unobserved variables based on the given probabilty distribution.
 - M-step infer the (maximun likelihood) probabilities from the data. This is the same as the full observable case.
- > Start either with made-up data or made-up probabilities.
- ➤ EM will converge to a local maxima.

Example Data

Naive Bayesian Classifier

Unsupervised Learning

- Fiven a collection of data, find natural classifications.
- This can be seen as the naive Bayesian classifier with the classification unobserved.
- **EM** can be used to learn classification.

Bayesian learning of decision trees

$$P(model|data) = \frac{P(data|model) \times P(model)}{P(data).}$$

- A model here is a decision tree
- We allow for decision trees with probabilities at the leaves
- A bigger decision tree can always fit the data better
- \triangleright P(model) lets us encode a preference for smaller decision trees.

Data for decision tree learning

att_1	att_2	class	count
t	t	c1	10
t	t	c2	3
t	f	c1	5
t	f	c2	12
f	t	c1	7
f	t	c2	14
f	f	c1	8
f	f	c2	1

Probabilities From Experts

Bayes rule lets us combine expert knowledge with data

$$P(model|data) = \frac{P(data|model) \times P(model)}{P(data).}$$

- The experts prior knowledge of the model (i.e., P(model)) can be expressed as a pair $\langle n, m \rangle$ that can be interpreted as though they had observed n A's out of m trials.
- This estimate can be combined with data.
- Estimates from multiple experts can be combined together.

