
IEE Visual Prolog 1 © Simon Holland

TWO-DIMENSIONAL VISUAL PROGRAMMING
AND THREE-DIMENSIONAL EXECUTION

VISUALISATION IN PROLOG

© Simon Holland
Computing Department

The Open University, Walton Hall, Milton Keynes MK7 6AA, England
E-Mail: s,holland@open.ac.uk

Abstract
A new, simple, expressively complete visual formalism for programming in Prolog is
presented. The formalism is shown to be equivalent to the standard textual notation for
Prolog. Some aspects of Prolog programs are identified that appear to be clearer for
novices when presented in the graphic formalism, while other aspects of Prolog are noted
that may be clearer in the standard textual notation. The design of an implemented
computer environment dubbed VPP (short for "Visual Programming in Prolog") is
presented that supports visual programming in Prolog using the graphical formalism.
Two different implemented experimental prototypes of VPP are discussed.

This paper appeared as
Holland, S. (1991) Two-dimensional Visual Programming and Three-dimensional
Execution Visualisation in Prolog. In Colloquium Digest of the Institute of Electrical
Engineers' IEE Colloquium on Visualisation, Virtual World, Virtual Reality. Pages 4/1-
4/4. IEE Electronics Division, Savoy Place, London.

IEE Visual Prolog 2 © Simon Holland

TWO-DIMENSIONAL VISUAL PROGRAMMING AND THREE-DIMENSIONAL
EXECUTION VISUALISATION IN PROLOG

© Simon Holland

A new, simple, expressively complete visual formalism for programming in Prolog is presented. The formalism is
shown to be equivalent to the standard textual notation for Prolog. Some aspects of Prolog programs are identified that
appear to be clearer for novices when presented in the graphic formalism, while other aspects of Prolog are noted that
may be clearer in the standard textual notation. The design of an implemented computer environment dubbed VPP (short
for "Visual Programming in Prolog") is presented that supports visual programming in Prolog using the graphical
formalism. Two different implemented experimental prototypes of VPP are discussed.

 An extension of the programming environment is described that allows Prolog execution spaces to be visualised in
complete detail (or presented in various compressed, pruned or abstracted forms) using a simple three-dimensional
extension of the same formalism. This approach is unique in that the same formalism can be used both for visual
programming, and then ('stacked' in three dimensions), for complete visualisation of execution. This appears to offer two
major advantages over other approaches described in the literature for visual programming or execution visualisation.
Firstly, only one simple formalism need be learned, by contrast with systems where two different formalisms must be
learned (and mentally interrelated) for programming and execution visualisation. Secondly, compared with systems that
use only two dimensions for execution visualisation, clutter and complexity is greatly reduced, and multiple
interrelationships can be shown clearly without a need to switch representation.

A prototype of the execution visualisation environment (as opposed to the visual programming environment), dubbed
VPE - short for "Visualising Prolog Execution" - is currently under construction. VPE is shown to provide complete
logical information on Prolog execution (as does the Transparent Prolog Machine (TPM), due to Eisenstadt and Brayshaw
(1987)). Note that, unlike TPM, VPE has the complementary VPP system (which uses essentially the same formalism)
to provide full facilities for visual programming. Relationships are identified that are more directly expressed in VPE
than in TPM. Particular pruned views of VPE traces are noted that allow recursion to be visualised in an intuitively
satisfying nested "Russian doll" fashion. In order to distinguish the formalism for visualising execution spaces from the
environment (VPE) that uses the formalism, the notation for visualising execution spaces is dubbed "3D-Prolog
execution notation".

A further extension of VPP and VPE for visualising and manipulating lists is presented that can be used to help make
clear the action and purpose of commonly occurring list unification programming techniques.

Some widely used prototypical Prolog programming techniques are identified which appear to be particularly lucid in the
VPP formalism for lists. It is argued that translation of a library of prototypical Prolog "techniques" into the visual
formalism and their examination in VPE may be a valuable way of helping novices to learn key Prolog programming
skills.

Uses for VPP and VPE in teaching Prolog to novices, and in building domain specific application kits are discussed. A
simple factory construction metaphor or "story" is presented to help novices make sense of Prolog execution traces. The
metaphor distinguishes in a detailed way between features of pure logic programming and "impure" procedural features
like cut, not, assert, etc. The metaphor makes this distinction by means of a detailed contrast between, on the one
hand, assembling machines in a factory in an orderly fashion from components and blueprints, and on the other hand
"trades union" activities such as "cut" and "not" that restrict or alter normal working practices. This metaphor may be
particularly helpful in helping beginners to understand backtracking, recursion, negation, cut, etc.

As well as supporting the factory metaphor, VPE is shown to have good low-level perceptual visuo-spatial properties
in allowing users to retrace backtracking behaviour continuously with a finger in a "natural" way.

Connections with related work on graphic formalisms for programming in Prolog and Prolog execution visualisation are
noted (e.g. Kahn and Saraswat, 1990). Connections with recent work on 3D techniques for the visualisation of flat trees
using 3-dimensional cone trees, cam trees, etc. at Xerox PARC are noted. We informally analyse the structure and
properties of the notation from an abstract human-machine interaction viewpoint. Limitations and possibilities for further
work are identified and discussed.

Dr S.Holland is a Lecturer in Intel l igent Tutoring Systems at the Department of Computing Science,
Kings Col lege , Univers i ty of Aberdeen, Aberdeen, Scot land, AB9 2UB.
Te l : 44 224 27 228 Fax: 44 224 48 7048 Email (Janet): s imon@uk.ac.abdn.csd

IEE Visual Prolog 3 © Simon Holland

Illustrations
Space limitations make it impossible to give a full illustration of VPP and VPE, but the following figures give a
flavour. Figure 4 shows a slightly idealised view of the VPP environment for visual programming in Prolog. Figure 1
shows a relation represented in VPP, and figure 2 shows clauses with shared constants. (Note that there is no requirement
to show "sharing" of constants (as opposed to "repeating" the constants where needed), but it is allowed and can aid
clarity in some circumstances.) Figure 3 shows a rule. Figure 5 shows the complete execution trace of a simple program
in VPE that demonstrates many of the features of Prolog execution that novices can find confusing: backtracking, initial
success that fails on subsequent backtracking, cut and negation. Figure 6 illustrates one of the ways of representing list
relations in VPP and VPE. Figure 6.1 and 6.2 show the two clauses of a simple append procedure. Figure 6.3 shows a
"polar" (or simplified) view of the execution of the program in appending a two element list to a a list.

Figures

abe parent ben

parent

parent

bob

parent liz

parent

parent

pam ann

pat

tom

parent jim

 Fig. 1. A relation in VPP. Figure 2. Clauses with shared constants in VPP.

Z

parent

parent

X

Y

female

different

1

2 4

33
sister

 Figure 3. A rule.

IEE Visual Prolog 4 © Simon Holland

File Edit View Search Order Fonts Query Windows

Y
parentX Zpredecessor

predecessor

2

parentX

predecessor

Z

1

A

Custom

System

?

New custom

Figure 4. A slightly idealised view of the VPP environment.

raining

Name

friends

sad

john

friendstom john

tom

2

sad

sam

friendstom sam sadsam

tom

party

partyName

1

birthday

happy

party

hot
humid

!

swim

hot

humid

swim

not raining

john

john

john

2

1

happy

friends

party

party

Figure 5 An execution trace

IEE Visual Prolog 5 © Simon Holland

[]

L

L
append

[H | L1]

L2

H

H

L1

L3

[H | L3]

append

append

Fig 6.1 append([],L,L]. Fig 6.2 append([H | L1], L2, [H | L3]]:-
append(L1,L2,L3).

H1

H1

append

append

[H | L1]
H

L1

append

L2

H
[H | L3]

1

2

2

Figure 6.3 Appending a list to two element list (top or "polar" simplified view)

Figure 6: This set of three figures shows a simple append program and one case of its execution.
The figures illiustrate one VPP convention for representing lists.

Acknowledgements
This paper is an extended abstract for a revised and extended version now in preparation of Holland (1991). Thanks to
David Philip and Mark Treglown for their work on implementing the prototypes of VPP, and to them and Kristina
Hook, Ben duBoulay, Thomas Green, Pat Fung, Paul Brna, Tony Priest, Josie Taylor, Rob Lucas and Peter Gray for
helpful comments and discussions.

References
Eisenstadt, M. and Brayshaw, M. (1987) An integrated textbook, video and software environment for novice and

expert Prolog programmers. Proceedings of the 2nd International Conference of the Prolog Education Group (PEG 87),
Exeter, UK 8th-10th July 1987.

Holland, S. (1991) Visual Programming in Prolog. Proceedings of the Sixth International PEG Conference on
Knowledge-Based Environments for Teaching and Learning. P. 676-684 Rapallo (Genova), Italy, May 31-June 2, 1991.

Kahn, K.M. and Saraswat, V.A. Complete visualisations of concurrent programs and their executions. In IEEE
workshop on Visual Languages IEEE Press 1990.

