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Abstract:  The underlying philosophy of the Transparent Prolog Machine (TPM) is that it
should serve as a medium for visualising the execution of Prolog programs in a manner which
is rigorously faithful to the internal behaviour of the Prolog interpreter.  It is therefore highly
biased towards the procedural account of Prolog execution.  Although this is useful for certain
types of practical program debugging, a true logic programming paradigm demands a more
declarative account.  Since TPM already incorporates special displays to show unification
details and goal outcomes, a straightforward extension enables the user to intervene to say
whether a particular unification (or indeed any particular goal outcome) was desirable ('thumbs
up') or undesirable ('thumbs down').  This intervention can take place either during 'live'
execution, or else retrospectively, after execution is complete.  This technique can be
combined with a selective highlighting facility which takes the user directly to a particular
context-sensitive point in the execution history, and with TPM's 'replay' facility which allows
execution to be played forward or backward at different speeds and different grain-sizes of
analysis.  The combination of techniques enables the user to mix a truly declarative debugging
style for clean logic programs with a procedural style for those cases which demand it.  The
paper presents worked examples of this new mixed paradigm.

Section:  Logic Programming

Length: 5000 Words

1  Introduction

The Transparent Prolog Machine (TPM) was introduced in (Eisenstadt and Brayshaw
1986; 1987) as a method of graphically displaying the execution of Prolog programs.  The
original conception of TPM emphasised fidelity to the underlying workings of the Prolog
interpreter.  While this provides many convenient conceptual 'hooks' for both novice
learners and expert debuggers, it weds TPM overwhelmingly to a procedural account of
Prolog execution.

Ideally, logic programs can be looked at declaratively, and divorced from the
underlying execution machinery.  Our aim in this paper is to show how straightforward
extensions to TPM enable it to handle both declarative and procedural debugging styles.
The key insights which drive this work are (a) that Prolog programming in practice
involves the integration of both declarative and procedural techniques, and (b) user
intervention in the form of 'thumbs up' or 'thumbs down' indications at critical points in
the TPM animated display can provide vital 'anchor points' from which a declarative
analysis of program behaviour can be performed.

Our work draws from the existing work in declarative debugging (Shapiro, 1982;
Lloyd, 1986).  The use of terms instead of literals as the basis for driving the bug location
and the location algorithm are taken from rational debugging (Pereira,1986).  Where we
differ is in the graphical nature of the interaction and the intergration of such a debugging
methodology into a large debugging system.  The use of a stored trace history is also used
by (Huntback, 1987; Sterling and Shapiro, 1986).  In this paper we shall use the term
declarative debugging to include both rational and algorithmic approaches.



The next section presents a brief overview of the Transparent Prolog Machine.
Subsequent sections introduce the concept of declarative user intervention, and a series of
worked examples.  We conclude with a summary of the important principles introduced by
our 'mixed paradigm' debugging approach.

2  Summary of TPM

2.1  AORTA diagrams
An ordinary node in a traditional and/or tree can be enriched to become a full-fledged

'status box' which concisely reveals the execution history of individual clauses.  This
simple augmentation, here dubbed the 'AORTA' ('And/OR Tree, Augmented') diagram,
is the focal point of our graphical debugger.  TPM allows both a long-distance view of
execution (displaying several thousand nodes and highlighting 'points of interest' at the
user's request) and a close-up view, using all of the detailed notation of AORTA diagrams.

To illustrate the close up view consider the following program taken form (Bundy et
al. 1986a)..

location(Person, Place) :-
at(Person, Place).

location(Person, Place) :-
visit(Person, Other),
location(Other, Place).

at(alan, room19).
at(jane, room54).
at(betty, off ice).

visit(dave, alan).
visit( jan, betty).
visi t( l incoln, dave).

If I pose the query ?- location(lincoln,Where), the above program succeeds with
the instantiation Where = room19.  Figure 1 shows the AORTA diagram corresponding
to the final snapshot of execution.

INSERT FIGURE 1 HERE

Figure 1  AORTA 'snapshot' after processing the query ?- location(lincoln,Where).  The subscript counter is
incremented for each new nonground clause.

The large rectangular boxes in figure 1 are called procedure status boxes.  The top
half of such boxes shows the status of the goal at the time of viewing.  A question mark
indicates a pending goal; a tick ('check') indicates a successful goal; a cross indicates a
failed goal; a tick/cross combination indicates an initial success followed by subsequent
failure on backtracking.  The lower half of the procedure status box indicates the number of
the latest matching clause head.  Thus, in the case of the topmost goal location the tick in
the top half of the box indicates that the goal was successful, and the number 2 below it
tells us that was the second clause which succeeded.  The small vertical lines dangling
beneath each procedure status box are known as 'clause branches', and the square boxes at
the end of such lines are 'clause status boxes'.  Such boxes use the same question-mark,
tick, cross, and tick/cross combination to depict the status of individual clauses.  If a given
clause head does not unify, then a short horizontal 'dead-end' bar is added instead of a
clause status box (examples may be seen under the procedure status boxes for at in figure
1).  Clause branches correspond to 'or' choices, but are drawn differently from their



traditional counterparts in order to make the processing of individual clauses obvious at a
glance.  Circular nodes are used to depict system primitives.

To illustrate unification, the relations and arguments next to the top half of each
procedure status box depict the state of play when the goal was invoked, whereas the
relations and arguments next to the bottom half of each procedure status box depict the
matching clause head found in the data base.  User-chosen variable names are subscripted
automatically to indicate renamed variables.  The diagrams use a sideways '=' with
arrowheads to show unification.  Up arrows indicate output variables; down arrows
indicate input variables.  Right-angled arrows indicate a variable 'passed across' or shared
with a sister goal.  Headless arrows indicate directly-matching terms.  Often there is a direct
visual correspondence between a variable and the arrow showing its instantiation in the
diagram.  Whenever the correspondence is 'indirect', we place a small lozenge beneath the
variable to show its instantiation at the moment of the AORTA snapshot.

2.2 The Long Distance View
The long distance view (LDV) is designed to allow the user to analyse the global

behaviour of very large programs.  The long distance view (LDV) uses a schematised
AND/OR tree in which individual nodes summarise the outcome of a call to a particular
procedure.  Each node is actually a collapsed procedure status box, showing just the top
half of the status box as introduced in above.  This collapsed box allows us the luxury of a
global presentation without sacrificing the important summary information provided by the
AORTA diagrams.  In our black and white display we use white to indicate a sucessful
node, black to indicate failure, grey shading to indicate success followed by failure on
backtracking, and thickenned lines to indicate 'currently pending goal'.  Another
convention we introduce in the LDV is the 'compressed' node.  This appears as a triangle
(evocative of a sub-tree shape), and indicates that a given Prolog goal is being treated for
the moment as a 'black box' primitive, i.e. a goal whose inner details are not shown at the
moment, but which can be expanded later upon request.  Figure 2 shows a snapshot taken
in the middle of the execution of a moderate size Prolog program.  Users of our graphical
tracer/debugger implementation have the option of visualising program execution
'retrospectively', i.e. following a behind-the-scenes analysis, or 'live', i.e. interactively, or
in a mixed combination of the two styles.  In the case of figure 2, the program is being
executed 'retrospectively'.  This means that it is possible to say 'in advance' (from the
user's point of view) precisely which nodes will be traversed.  The thin horizontal line
indicates a user-defined predicate in the so-called 'pre-ordained execution space', i.e. a call
which has not yet happened at the moment the snapshot is taken, but which the program
analyser can guarantee will eventually happen.  Analogously, a small dot indicates a system
primitive which has not yet been executed, but which will eventually be executed.

INSERT FIGURE 2 HERE

Figure 2. A Long Distance View diagram, in the middle of (re-)execution 'replay'..

A detailed account of the notation, and the way it can be used to show complex
unification history (including multiple invocations during backtracking) and extra-logical
features such as the cut, is presented in Eisenstadt and Brayshaw (1988a).

3.  Declarative user intervention: 'Thumbs up'/'Thumbs down'

Declarative debugging allows the user to debug a program without having to know
anything about its detailed run-time execution.  For declaratively written Prolog programs it
is highly desirable to be able to debug them declaratively.  Even for  programs not



originally conceived declaratively it is still a very powerful debugging technique.  For these
reasons we wish to incorporate the technique into TPM.

The declarative debugging system is available as an option within TPM .  It may be
invoked both from within a program that is still being executed 'live' or run on a post-
mortem trace of the program.  If no guidance is given as to which goal to debug the system
will choose the top-level goal of the current query.  The user can change this simply by
dragging the debugging icon to a particular node, or by selecting a different node in the first
place when invoking the declarative debugging system.  A third possibility is to use the
selective highlight facility of TPM which allows the user very accurately to specify
particular goal/argument combinations, and with the aid of this quickly pin-point the start
point for the debugging session.  The advantage that this flexibility gives us is that the user
can use any relevant knowledge about a big program to select candidate goals in the system
to debug.

The system uses the intuitive notion of a 'thumbs-up' sign to indicate whether a goal
and outcome is correct or not.  Further thumbs-up/thumbs-down icons indicate whether a
goal is admissable or solvable.  The icons are simply interchanged by mouse click.  This
process is equivalent to the oracle of other declarative debuggers.  Wrong solution mode is
equivalent to the 'thumbs-down' of a sucessful goal.  Incorrect solutions are 'thumbs-
down' to an unsuccessful goal.  Non-termination isn't addressed here.  In a post-mortem
trace analysis we have no improvement on depth-bound stack monitoring (Shapiro, 1982)
to suggest.  However TPM's live mode already assists us in the spotting of non-
termination by graphically making the infinite regress apparent, as it happens.

It has been suggested that the number of queries that the oracle makes may be limited
by keeping a history of user's oracle responses (e.g. Shapiro, 1982; Lloyd, 1986).
However this presupposes that a predicate is used in the same manner in a program
wherever it is invoked, and that the program contains no side-effects.  For this reason
oracle queries are not stored.  A second suggestion has been to have another version of the
program stored elsewhere which can be used as the source for answering the oracle.
Whilst this might be possible for certain scenarios, e.g. fixed curriculum teaching of
novices (e.g. Looi, 1987; Anderson et. al., 1985), in the real world, and particular when
we are dealing with experts writing novel applications, we believe it is not possible to have
a correct version of the program lying around in order to mechanise the oracle.

The debugger searches the tree to find either an 'incorrect' node whose subgoals are
all correct (i.e. a wrong solution), or a goal that is the deepest failing subgoal of some other
failing goal ( i.e. an incorrect solution).  Additionally, the program can carry out its search
on goals that are still pending.  Here, the 'thumbs-up/thumbs-down' symbols refers to
whether the goal is admissable, solvable, and whether the goal, as so far executed is ok.
The user may additionally 'thumbs-down' click on any lozenge, variable, clause box or
data-flow arrow.

A typical sequence for debugging is as follows.  The overall execution space is
shown using the long distance view (LDV).  A 'queried' node is shown in a special 'zoom'
viewport in its full (AORTA) status box representation.  Beside the status box for any
queried node are two things.  Firstly, the status box and the corresponding node in the
LDV are labelled in order to emphasise the context of the query.  Secondly, immediately to
the left of the status box is a large thumbs-up icon.  This indicates that the outcome of the
goal is assumed for the moment to be correct.  Beneath this main icon are two 'inferior'
thumbs-up/thumbs-down icons, indicating whether the goal is either admissable or
solvable.  If any 'thumbs-up' assumption is erroneous, the user can simply toggle it to
'thumbs-down' with a mouse-click.  After any of these icons have been given the thumbs-
down the user then can point to any variable, clause status box, data-flow arrrow or part of
a lozenge that is in error, as outlined below.

• lozenges   Giving a lozenge a 'thumbs-down' is equivalent to indicating an
incorrect term.  As in (Pereira, 1986) the debugger now uses knowledge of the



dependencies of that term and the operational semantics of Prolog to find another
candidate node.  If a particular term in a lozenge is chosen, then we use Pereira's
algorithm to follow up the term's depemdancies in choosing which node to query
next.

• variables  The user can see variables both in the calling clause and the matching
clause head, independent of any instantiations that they might have.  By pointing
out a variable as incorrect, the user can specify a lexical error either in the goal, or
in the matching clause head.

• clause status box   If a wrong clause outcome is detected, a thumbs down may be
given to a particular clause or clauses.  For example, a goal may produce the
wrong solution, because there is a missing solution to a previous clause.  The
user can thus immediately point to the failure of an earlier clause as being the
source of the error.  This unintended failure may be investigated, and no time is
wasted debugging a potentially spurious incorrect solution.  A missing solution
may also result form a earlier clause succeeding unexpectedly, or as a result of a
'cut'.  In the case of the 'cut', if this has caused failure of a subgoal and as a
result a subsequent clause branch was not explored, then the debugger will query
all those subgoals prior to the cut.  If one of them succeeds when not expected,
the search continues until the deepest incorrectly succeeding goal is found, in
which case this item is taken as the bug.  If no such goals are at fault, then the
'cut' itself is located as the source of the bug.  To indicate that an untried branch
was on the intended execution path, the user can indicate 'thumbs-down' on that
clause's untried clause branch.

• data-flow arrows   The user may 'thumbs-down' on a dataflow arrow to indicate
that the data-flow itself is incorrect i.e. an input variable should in fact be an
output variable, or conversely, an output variable should in fact be an input.  This
is differnent from indicating that a term is incorrect.  Consider an output variable
that should have been input.  The actual binding that this variable has got may be
a plausible value; however this value should have been input, not produced
unintentionally as a result of a unification of an incorrectly unbound variable in a
subgoal (posssibly in this scenario a test for the intended binding).  The bug
actually lies in a previous subgoal that failed to produce a binding for this
variable.  Hence the distinction is this:  if the dataflow is incorrect then this should
receive the 'thumbs-down', if the dataflow is correct, but the terms that are bound
to the variables is incorrect, then the particular variable lozenges should be given
the 'thumbs-down'.

The user can thus point to a series of features in the AORTA diagram for a given node
and highlight those features that are incorrect.  This means that the user can potentially spot
more than one bug in a goal.  In this case the first error that the user locates is the one that
is immediately investigated.  However the other bugs are remembered and pushed onto a
stack.  When a bug is sucessfully located, the user can choose to pop this stack and follow
up another error which was spotted 'en route'.  These errors may of course be due to the
same single bug.  If it is the case that the dependencies of an indicated error can be traced
back to the same newly located bug, the user is prompted to see if the two errors have the
same source and/or are the same.  Otherwise the search for the source goal will start from
the point at which this new bug was first spotted by the user.  The stack of uninvestigated
errors grows as and when the user locates multiple bugs.  Errors may be popped and
discarded if the user wishes no longer to consider them.  Alternatively, it is possible that
experts may spot a bug before that actual goal in error is located, just because of their
knowledge of the program they have written.  Instead of carrying on using the debugger
they can abort the current bug search at any point.  If there are other bugs on the current
stack, they can be followed up at this point.



If the user does not indicate any of the lozenges, data-flow arrows, variables, or
clause status boxes as in error, and the user has indicated no earlier item to guide the
search, then the tracer will follow a top down search similar to that advocated by (Lloyd,
1986).  The user can thus merely 'thumbs-up/thumbs-down' the entire status box and the
tracer will, albeit more inefficiently, carry on trying to locate the clause in error.

As we have outlined above the declarative debugger will search through the execution
tree.  However, additionally the user can directly intervene in this process, by explicity
moving to some node and carrying on debugging from there.  This user-driven direct
intervention in the debugger's search results in the previous declarative debugging session
being terminated and a new one started at the new node.  It clearly must be used carefully,
otherwise if randomly employed, the debugger might never converge on a buggy goal!
This ability however allows the user to use the other facilities in TPM to explore the trace
information and then invoke the declarative debugger at some potentially interesting point.
The use of facilities like TPM's 'replay' allows the user to choose at which stage in the
history of a program execution they want declaratively to investigate a certain goal.  For
example, consider programs that change their state by performing side-effects and
constantly reinvoking a given goal.  By using the replay and/or selective highlighting, we
can easily investigate whichever invocation of that goal we wish to inspect more closely
and then invoke the declarative debugger on that node.  This is a clear example where it is
very useful to be able readily to switch between procedural and declarative accounts when
debugging.

When a bug is located, the debugger will attempt to say what the bug is.  This uses a
cliche analysis based upon (Eisenstadt, 1985), but expanded to incorporate the additional
symptomatic information as a result of the oracle queries.  This currently includes no
definition, wrong arity, failure to unify, various failures due to cut (see above), and errors
in variable bindings and dataflow, in addition to being able to localise the bug down to a
particular predicate and clause.

We shall now consider a concrete example in order to highlight and exemplify the
current system.

4.  Worked examples

Let us consider the following program.  The predicate explore1 is a simple rule-
engine, but enhanced to produce both a proof of its derivation and a truth value, true or
false, for that proof.

: -  op(850,fx,not).
:-  op(900,xfx,:) .
: -  op(870,fx, i f ) .
: -  op(880,xfx, then).
:-  op(800,xfx,was).
:-  op(600,xfx,from).
:- op(540,xfy,and).
:-  op(550,xfy,or).
:- op(300,fx,'derived by').
: -  op(100,x fx , [g ives,eats ,has, isa] ) .

explore(Goal,Goal is true was 'found as a fact',true):-
fact : Goal.  %positive fact the truth value 'true'

explore(Goal,Goal is false was 'found as a fact',false):-
fact : (not Goal).  % negative fact - truth value 'false'

1 This code is based on that developed by Frank Kriwaczek of Imperial College, for the Open University's
'Intensive Prolog' Course (Eisenstadt,1988), based upon a 'rational reconstruction' of an expert system shell
described in Bratko (1986).  The bugs have been added by the present authors recalling actual mistakes observed in
students.



explore(Goal,Goal is TVal was 'derived by' Rule from 
Proof ,TVal ) : -

Rule:if Cond then Goal,  %Truth of a rule takes the value
explore(Cond,Proof,TVal). %of the proof if its conditions

explore(Goal and Goals,Proof and Proofs,true):-
explore(Goal,Proof,true), % for a conjunct the proof the
explore(Goals,Proofs,true). % conjuction of indiv. proofs

explore(Goal and Goals,Proof,false):-
exp lo re (Goa l ,P roo f , fa l se ) ,
exp lo re (Goa l ,P roo f , fa l se ) .

explore(Goal or Goals,Proof,true):-
explore(Goal,Proof,true);   % for a disjunct the proof
explore(Goals,Proof,true). %that of one of the disjuncts

explore(Goal or Goals,Proof and Proofs,false):-
exp lo re (Goa l ,Proo f , fa lse) ;
exp lo re (Goa ls ,P roo fs , fa l se ) .

To this let us add the following simple database of facts and rules:

fact: buttercup gives milk.
fact: (not buttercup eats meat).
fact: (not buttercup has hair).

m_rule: i f
A has hair
o r
A gives milk

t h e n
A isa mammal.

c_ru le : i f
A isa mammal
and
A eats meat

t h e n
A isa carnivore.

The program contains a couple of bugs. We shall now work through a session with
the debugger to show how these bugs can be located.  First observe the following top-level
interaction:

 ?-explore(buttercup isa carnivore, How, TruthValue).
How = buttercup isa carnivore is false was 'derived by' c_rule from

buttercup isa mammal is false was 'derived by' m_rule from
buttercup has hair is false was 'found as a fact' and Proofs6.

TruthValue = false

The above output differs from what we expected to see, however.  If we now invoke
the debugger, the system will show us the LDV of the execution tree, as shown in figure 3,
and will default to querying the top goal, as shown in figure 4.

INSERT FIGURES 3 AND 4 HERE

The large A in the corner shows that this queried node corresponds to the node A in
the LDV above.  Next to it is the 'thumbs-up/thumbs-down' icon.  It defaults initially to the
'thumbs-up' assumption, but in this instance we can see that this goal is not correct.
Although explore has succeeded it has produced an incorrect proof of the goal.  A mouse
click on the 'thumbs-up' icon turns it into a 'thumbs-down' icon, at the moment indicated
by the snapshot depicted in figure 4.  We need not touch the other two 'thumb icons' since
they correctly show that the goal is admissable and solvable.  We can now go and point to
any parts of the goal, variable bindings, clause boxes, or data-flow arrows which are in



error.  As we have already noted, the proof is incorrect, so we mouse click on those parts
of the lozenge that are in error.  The debugger then looks where this binding was derived
from and finds the goal marked B in the LDV and queries the user as shown in figure 5.

 INSERT F IGURE 5 HERE

Figure 5 shows the goal that constructs those parts of the proof that we indicated as
being in error, so therefore we have indicated 'thumbs-down' for the goal (as shown) and
now we can do the same more specifically for the lozenge as well.  The debugger will now
bring up the AORTA shown in figure 6 and marked C , which is correct, so we have
indicated 'thumbs-up' for this clause.

I NSERT FIGURE 6 HERE

The debugger now correclty identifies that clause 7 of explore is incorrect, since we
have a case where a goal has correct subgoals, but it itself is not correct.  Upon inspection
we can see that most probably the user has a confusion about truth tables.  To prove the
goal Goal or Goals is false you are required to prove both goal Goal and goal Goals are
false, not that goal Goal or goal Goals is false.  The corrected version looks like the
following.

explore(Goal or Goals,Proof and Proofs,false):-
exp lo re (Goa l ,P roo f , fa l se ) ,
exp lo re (Goa l ,P roo f , fa l se ) .

If we re-run the original query with the modified code however, the program now
fails to find a solution.  Let us invoke the debugger a second time.  This time the LDV  is
shown in figure 7.  The letters next to certain nodes are there to show the correspondence
between those nodes and the respective debugger queries.

INSERT FIGURE 7 HERE

The debugger will now try and identify the most deeply incorrectly failing node.  It
follows (Pereira, 1986) in searching through failed goals and attempts to see if they are
admissable or solvable.  As we can see from figure 8, after we have identified the top-goal
as incorrect as in the previous example, we then search for the next relevant goal to query,
that is B.  Here this is the first goal with a onetime solving subgoal..  Notice that  the
intervening goals between the top-goal A and the candidate B have ignored as far as the
oracle is conserned.

I NSERT FIGURE 8 HERE

This goal should have been solvable, so we have given the outcome a 'thumbs
down'.  We will now investigate the children of this goal.  We next choose the failing
subgoal, C and query the user about it, as shown in figure 9.

INSERT FIGURE 9 HERE

The goal labelled C is inadmissable, so we have updated the icons accordingly.  The
second argument to explore must always be input, so we can now click on the data-flow
arrow pointing downwards above Proof to indicate that this is incorrect.  The debugger
will now query goal D  This goal fails on backtracking as we can see in figure 10, however
the goal is admissable and solvable and should be true.  Therefore we have given the
outcome a 'thumbs down'.

INSERT FIGURE 10 HERE



When we have a node like this an additional menu comes up, containing a skeleton
status box as shown below.  By clicking on any of the clause branches the user is able to
toggle through the possible outcomes, i.e. succeed, fail, not unify, suceed but fail on
backtracking, or not be attempted, for each of the clauses.  In this instance the skeleton
status box is shown in figure 11.

INSERT FIGURE 11 HERE

Clause one should have suceeded, whereas clause two should not have been
attempted, so we have indicated this.  This can now be checked against what actually
happened.  If this outcome never arose, then we have an incorrect solution and debugging
must continue to find the cause.  If this scenario did occur, as in this case, then the
predicate has behaved correctly  Note this is a good example of when it might be useful to
use the replay or zoom facility in order to help answer the oracle.  If the user did not know
the answer to a query or wasn't sure, he or she could easily check it out.

At this point we are able to locate the problem to clause 5 of explore , since we have
now found a clause which fails, but the oucome of its subgoals is OK.  The debugger
concludes that clause 5 is in error and either the scoping of the Proof variable is incorrect,
or else the two explore goals must be disjuncts instead of conjuncts in order to produce
the incorrect dataflow.  The bug is in fact the latter of these two possibilities.  If we study
the clause in question, you will notice that again the truth values are incorrect.  The
conjunct of goals Goal and Goals is false if either Goal or Goals is false, not if both of
them are false, hence the corrected clause should be as follows.

explore(Goal and Goals,Proof,false):-
exp lo re (Goa l ,Proo f , fa lse) ;
exp lo re (Goa l ,P roo f , fa l se ) .

An important thing to notice and something that is central to the approach outlined
here is that when answering questions the user has the full power of the trace package
available at anytime.  Hence the context of any oracle query is always immediately
available.  Further, in order to answer an oracle query, the user can use any of the other
facilities of the tracer, e.g. zoom, replay, highlight etc. in order to better understand the
question and more easily answer it correctly.  The tight integration of the declarative
paradigm into the spirit of the rest of the tracing system makes it possible for the user to
switch between declarative and procedural views of the program whenever necessary.  We
believe this may prove to be an essential attribute for any debugging system if it is going to
scale up and deal with bugs in truly large logic programs.

5.  Conclusions: mixed paradigm debugging

.
We have outlined how the benefits of declarative debugging may be smoothly

incorporated into TPM.  The integration affords a series of advantages, namely that:

• Declaratively written programs may be debugged declaratively, but the debugger
can still capitalise an the clarity of the graphical execution model thus improving
the oracle mechanism.

• The 'thumbs-up/thumbs-down' icon provides a powerful yet intuitive method for
answering oracle queries.

• Highlighting either lozenges, clause-boxes, variables, or data-flow arrows allows
the debugger to choose the most relevant action to take next, dependent upon the
specific response.

• Non-declarativley written programs may still be debugged declaratively.



• Multiple bugs may be handled.

• The integration of declarative debugging into TPM allows declarative debugging
to be used easily on potentially very large programs.

• The declarative debugging paradigm may be incorporated into a larger tracing and
debugging system allowing the user to change at will between the two styles.

Prolog, as the language currently stands, contains a number of features including
clause ordering, some of the dirtier uses of the cut, or uses of assert and retract which
are not declarative in nature.  Further, many experts prefer, and are very skilled at using
procedural tracers in order to locate bugs.  However it is undoubtly the case that the
language also supports a declarative style of programming.  We beleive that it is essential in
a usable logic programming environment to support both of these debugging styles and that
the very integration described herein makes the notion of mixed paradigm debugging a
reality.  By supporting the two styles we attempt to provide the user with the best of both
worlds, and hope that the uniting of the two approaches leaves the user better equipped to
deal with the very bugs that we require a powerful trace package to help us find.
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