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KADL Specification of The Cash Point Case Study

Pascal Poizat, Jean-Claude Royer

Pascal.Poizat@inria.fr, Jean-Claude.Royer@emn.fr

Abstract

This report presents the cash-point case study and mainly describes its specifications with the KADL
ADL. The language is a mixed of state transition diagrams, abstract datatype and modal logic. We
emphasize the need for abstract and formal descriptions especially communication architectures. We
also gives some proofs done using our specific tool based on symbolic transition systems. Last we
discuss previous specifications for this case study.

Categories and Subject Descriptors: D.2, D.2.4, D 2.11 [Software Engineering]: Software Verification,
Software Architectures

General Terms: Experimentation, Languages, Verification

Additional Key Words and Phrases: Architectural Description Language, Cash Point Case Study, Com-
ponent Based Software Engineering, Symbolic Transition Systems, Abstract Data Type, Verification





1 The Cash-Point Case Study

This case study is based on the FM’99 cash-point service benchmark [16]. The system is composed
of several tills which can access a central resource containing the detailed records of customers’ bank
accounts. A till is used by inserting a card and typing in a Personal Identification Number (PIN) which
is encoded by the till and compared with a code stored on the card. After successfully identifying
themselves to the system, customers may either (i), make a cash withdrawal or (ii), ask for a balance of
their account to be printed. Information on accounts is held in a central database and may be unavailable
in case of network failure. In such a case, actions (i) and (ii) may not be undertaken. If the database
is available, any amount up to the total in the account may be withdrawn. Withdrawals are subject to a
daily limit, which means that the total amount withdrawn within a day has to be stored on cards. Daily
limits are specific to each customer and are part of their bank account records. Another restriction is that
a withdrawal amount may not be greater than the value of the till local stock.

Tills may keep “illegal” cards, i.e. cards which fail a key checking. Each till is connected to the
central by a specific line, which may be down or up. The central handles multiple and concurrent
requests. Once a user has initiated a transaction, it is eventually completed and preferably within several
real time constraint. A given account may have several cards authorized to use it.

1.1 Hypotheses

With reference to the original case study we add the following extensions: a realistic authentication
mechanism with three tests for the PIN, an abstract database for the bank, a precise management of the
card and a daily limit which is specific to each customer. We do not take into account the real time
constraints.

• We first consider that the communications are safe between the tills and the bank manager. In a
second step we will consider some communications problems.

• The till may keep the client card, in such a situation the client has to get back his card. We do not
model this last action in the client behaviour and the card is simply removed from the system.

• We assume a given number of tills and a given number of clients. One client is not obliged to use
a given till, a till may have no client but no more than one. Since a till without client does not
introduce any activity we only consider a till with a client.

• We do not formalise printing the balance and sending an account statement by post. We focus on
the withdrawal activity which is the most complex and critical.

• We introduce a clock in the till which computes the date. The date is used to check the date of the
last withdraw action. We reduced it to the values 0, 1 since we are interested in tagging the card
with a date and checking if this date is equal or not to the current date.

The section 10 gives a more detail comparison with other approaches for this case study.

2 KADL notations

This section gives the main aspects of the KADL notations which are based on symbolic transition
system and abstract data type descriptions. We also try to reuse some of the UML notations.
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2.1 Component Interfaces

Components, both primitive and composite ones, are represented using boxes with well-defined inter-
faces. These interfaces are sets of event ports, i.e. some form of dynamic signature made up of names
with offer parameters (as in LOTOS) and interaction typing (as in SDL). A value emission of a D data
type is noted !D and a value receipt ?D. The communication interface symbols we use are described in
Figure 1.

communication with

T

synchronous communication

asynchronous communication

hidden synchronous communication

hidden asynchronous communication

a T component
(required service)

communication to (TO)

T

T a T component
communication from (FROM)

(provided service)

(rendez−vous)
a T component

Figure 1: Notations for Dynamic Interfaces

We have two kind of communication (synchronous or asynchronous). Hidden communication is
used in composites to ensure that their external environment will not be able to communicate with them
using specific (internal, hidden) ports. An event port may correspond either to a provided service (events
received from the component environment), to a required service (events sent to the component envi-
ronment) or to a synchronizing mechanism (rendez-vous, inherited from LOTOS). Only value receipts
can be made on provided services, and only value emissions on required ones. Rendez-vous enable to
use both but is restricted to synchronous communication. Component types can be associated to event
ports thanks to the TO/FROM keywords. This enables one to state that any component to be glued on this
signature has to satisfy (at least) a given protocol (see Inheritance, section 2.3 below).

Genericity and Patterns. Component interfaces may be generic on (possibly constrained) data
values (i.e. constants, e.g. N,M:Natural {1<N<M}), data types (e.g. MSG:Sort, Fig. 24), event
ports and component types (e.g. MsgConnection, Fig. 7). As in UML, this is denoted by dashed
boxes in the top corners of the components (top left for event ports and top right for data values, data
types and component types).

In conjunction with genericity on data types and component types, genericity on event ports yields
the expressiveness of KADL to express patterns. As in LOTOS and object-oriented programming some
idioms or patterns may be used in KADL to describe general and common architectures of systems.

2.2 Primitive Components

Primitive components are sequential components described with two aspects: a dynamic behaviour and
a data type description integrated within a Symbolic Transition System (STS). This data type description
may be given either using algebraic specifications [32, 9], model oriented specifications [4] or even Java
classes as in a library for STS we are developing [23]. The next subsections illustrate the presentation of
these aspects in KADL.

/Users/jroyer/Documents/PAPIERS/JUCS2/FIGURES/InterfacesGB.eps
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Symbolic Transition Systems (STS). STS are (possibly nondeterministic) symbolic labelled finite
transition systems which have appeared under different forms in the litterature [22, 7, 9]. STS provide
an expressive and abstract means to describe symbolically dynamic behaviours. The description of an
STS may be given either in its graphical form (Fig. 8) or in its textual form [27] (better suited for tool
processing).

Our STS have the following features. First of all, they rely on both a static description of a data type
(denoted by self) and a dynamic event-oriented one. Transitions have the form: [guard] event
/ action. guard is a predicate on self and possibly received values which has to yield true for
the transition to be fireable. event is a communication event (a communication port name together
with reception variables denoted using ? or/and emission terms denoted using !). action is the action
to be done when the transition is fired. Both the guard and the action part can be empty. As in
LOTOS an i action can be used to denote non observable (internal) events. In Figure 8 this is used to
denote a timeout which may occur during the communication with the bank. Open terms, i.e. terms with
variables, can be used in states (a predicate on self) and in the guard or the variables/term part of the
event (this is the reason why our transition systems are symbolic ones).

The main interest with these transition systems is that (i) using open terms in transitions (received
variables), they avoid state explosion problems, and (ii) using an open term in states (self), they define
equivalence classes (one per state) and hence strongly relate the dynamic and the static (algebraic) rep-
resentation of a data type.

Abstract Data Types (ADT). An ADT is given for each STS, and transitions from this STS may use
the operations defined in the ADT. The operations semantics are described using algebraic axioms. Note
that B machines or Z schemas may be used instead or in conjunction with these algebraic specifications
following the [4] principles. A sort corresponding to the STS is called sort of interest, and a term of this
sort is denoted by self in the STS.

We here consider a simple approach where (i) actions are explicitly given in the STS (and then
defined in the ADT), and (ii) the axioms are fully given by the specifier. See the section 3 for more
details. In [32] we present a more automated approach which enables one to derive the operations, their
profiles and parts of the axioms from the STS.

Graphical notations. Composition diagrams (Fig. 2) are used to represent the component structure
of composition views.

identifier

Component Name

Component Name Component Name

identifier

Figure 2: Composition diagrams.

/Users/jroyer/Documents/PAPIERS/JUCS2/FIGURES/compositionDiagram.eps
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Here we reuse the UML class diagram notation with aggregation relations (white diamonds) to denote
concurrent composition of subcomponents into a composite. The UML aggregation notation has been
chosen (in place of the composition notation for example) since the subcomponents of a composite (and
more generally the components of an architecture) usually have independent life-cycles. As presented
earlier on, we also reuse UML notations for templates/genericity (dashed boxes, see page 6) and for
inheritance (white arrows, see subsection 2.3). We use the usual UML roles on aggregation relations to
identify components and extend this notation using our range operator. A component interface may be
associated with a composition by exporting some events of its subcomponents. Hence, composites are
components too, and genericity and pattern issues (which we dealt with for primitive components in page
6) apply also to them.

identifier

Component Name

Component Name Component Name

Axioms
ϕ
ϕ I

indexed identifierindexed identifier

transition formulatransition formula

identifier

Figure 3: Communication diagrams.

Communication diagrams are composition diagrams complemented with glue rules (see Fig. 3). The
axioms (AxΘ) and the state formulas (ψ and ψI) are put in the composite component. Composition-
oriented transition formulas (λ) are represented as lines between the components to which the (indexed)
subparts of the formula applies. For example, a formula such as c1.a1 ⇔ c2.a2 would be represented as
a line between components c1 and c2.

A communication interface symbol (see Fig. 1) is given for each formula to give an information on
the communication type. The identification part is put above the lines and the temporal formula is put
below. In the previous example, one would have c1 and c2 above the line, and a1 and a2 below.

c1−−−→
a1

�
c2−−−→
a2

If a range operator is used, it is also put above the line, on the side of the component to which it applies
(e.g. with server.send⇔ ⊕i : [1..N ](client.i.receive) a ⊕ would be put on the client.i side)

server
−−−−−→
send

�
⊕ i:[1..N ] client.i
−−−−−−−−−→

receive

or above the communication interface symbol if it applies to the whole formula (e.g. with
∀i : [1..N ](server.send ⇔ client.i.receive) a ∀ would be put above the communication interface

/Users/jroyer/Documents/PAPIERS/JUCS2/FIGURES/communicationDiagram.eps
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symbol).
∀ i:[1..N ]

server
−−−−−→
send

�
client.i

−−−−−−→
receive

More details on graphical notations are given in [10] and in the notation appendix of [27].

2.3 Inheritance

In object-oriented programming, inheritance is one of the key concepts that enable the reuse of classes.
Inheritance enables one to add methods to a class, and allows overloading and masking. Inheritance
may also be used to add or strengthen constraints. In KADL we provide a simple form of inheritance
for integration views. Our inheritance mechanisms are restricted to the adding of new states and new
transitions. We do not allow overloading nor masking since this yields semantic complexity. This rather
strict inheritance constraints simplify the dynamic descriptions of views, allow subtyping and ensure
some kind of behavioural compatibility. Here, inheritance semantically corresponds to trace inclusion
(the traces of the super-view are a subset of the traces of the sub-view). More complex behavioural
subtyping relations could be used [26, 35] but would have to be extended for STS.

3 Algebraic presentations

This section gives some details about the datatype syntax and the specification principles for ADT. A
datatype is either a predefined datatype (such as integer, or boolean) with some additional functionalities.
We use genericity, for instance List[Natural], and× represents the product of two datatypes. When
more complex datatypes are needed we describe them using an algebraic approach. Such a description is
summarised below for the card, where /* */ is a comment. We have two main parts the signature and
the axiom parts, see below the Card data type example.

/* ADT declaration */
Sort Card
/* imported types */
Imports Boolean, Natural, PinNumber, Money, Card, Ack, Info

/* operation profiles */
/* generator of a card */
newCard : Ident x Money x Money x PinNumber x Date -> Card
/* update daily limit */
updateDailyLimit : Card x Money x Date -> Card
/* accessor for client id */
id : Card -> Ident
/* daily limit */
max : Card -> Money
/* daily amount */
sum : Card -> Money
/* PIN code */
code : Card -> PinNumber
/* date of the last withdraw */
last : Card -> Date
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/* variable declaration */
Variables s,m,s1:Money; c,c1:Card; code : PinNumber; d,d1:Date

/* axioms declaration */
id(newCard(i, m, s, c, d)) = i
max(newCard(i, m, s, c, d)) = m
sum(newCard(i, m, s, c, d)) = s
code(newCard(i, m, s, c, d)) = c
last(newCard(i, m, s, c, d)) = d
d=d1 => updateDailyLimit(newCard(i, m, s, c, d), s1, d1)

= newCard(i, m, s+s1, c, d)
d!=d1 => updateDailyLimit(newCard(i, m, s, c, d), s1, d1)

= newCard(i, m, s1, c, d1)

Figure 4 presents an abstract grammar for our abstract datatypes. A terminal is written with teletype
and a non terminal with SMALL CAPITAL. In the expressions or rules * denotes a list, binary | is alter-

1) ADT ::= Sort TYPEID Imports TYPEID* PROFILE+
Variables DECLARATION* AXIOM+

2) PROFILE ::= OPERATIONID : (null | TYPEIDENT) -> TYPEIDENT

3) DECLARATION ::= VARIABLEID (, VARIABLEID)* : TYPEIDENT

4) TYPEIDENT ::= BASICID | TYPEID | TYPEIDENT x TYPEIDENT | List[ TYPEIDENT ]
5) AXIOM ::= CONDITION ==> CONCLUSION

6) CONDITION ::= null | (EQUATION |NEQUATION) ∧ CONDITION

7) EQUATION ::= TERM = TERM

8) NEQUATION ::= TERM != TERM

9) CONCLUSION ::= OPERATIONID(TERM*) -> TERM

10) TERM ::= CONSTANT | VARIABLEID | OPERATIONID(TERM*)
11) OPERATIONID ::= LOWERCASELETTER (LETTER | DIGIT | _ )*
12) TYPEID ::= UPPERCASELETTER (LETTER | DIGIT | _)*

Figure 4: ADT Abstract Grammar

native, unary + denotes one or more elements and null the empty sequence. BASICID are for exam-
ple Integer, Boolean, Character with literal CONSTANT and operations OPERATIONID. Of
course these basic types may be defined as ADT.

Axioms are positive conditional axioms. We choose a rather operational approach which is sim-
ple to translate into programming language. We define a basic generator for the datatype and several
constructors and observers. We expect that normal forms are unique, see [3] for related definitions and
techniques. To manage partiality and errors we use special data values, for example the absence of the
card is denoted by a special noCard : Card value. Algebraic specifications allow the definition of
partial functions but we avoid this to simplify the datatypes.

4 Auxiliary Datatypes

We need some simple datatypes which are briefly described here, and they are provided with some
functions.
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Money is Natural a simple datatype for money.

Date is Natural a simple datatype for date.

inc : Date -> Date

Ident is Natural : it denotes the client identities as they are defined in the bank account.

PinNumber is Natural : the code PIN datatype.

crypt : PinNumber -> PinNumber

Card = Ident × Money × Money × PinNumber × Date : a card contains a client iden-
tity, the daily delivery limit, the current daily delivered amount, the PIN code, and the date of the
last withdrawal.

updateDailyLimit : Card x Money x Date -> Card
id : Card -> Ident
max : Card -> Money
sum : Card -> Money
code : Card -> PinNumber
last : Card -> Date

The constant noCard : Card is a default card which denotes the absence of card.

MSG : is an abstract type with two concrete subtypes: Info and Ack.

Info = Ident × Money : type of messages denoting a client identity and the amount to withdraw.
This datatype is used to communicate from the till to the bank to require withdraw authorisation.

client : Info -> Ident
sum : Info -> Money

Ack is Boolean : type of message denoting the reply of the bank manager to tills to allow or not a
withdraw.

isOk : Ack -> Boolean

Accounts = List[Ident × Money] : the client accounts.

withdraw : Accounts x Ident x Money -> Accounts
account : Accounts x Ident -> Money

Informations = List[Natural × Ident × Money] : memorises the bank interface num-
ber, the client identity and the amount to withdraw in the database.

cons : Natural x Ident x Money x Informations -> Informations
isIn : Informations x Ident -> Boolean
hasKey : Informations x Natural -> Boolean
sum : Informations x Natural -> Money
remove : Informations x Natural -> Informations
client : Informations x Natural -> Ident
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5 The System Architecture

The system architecture of the till system is given in the Figure 5 page 12 composition diagram. The till
system is made up of N TillLines (i.e. a Till and its MsgConnection specialized communication
lines) and the bank with its bank interfaces. The range operator is used to identify the TillLines:
tills.i:[1..N].

<<bind>> (Ack)

TillSystem

MsgConnection

Till

BankManager

BankInterface

data db<<bind>> (Info)

TillLine

bmtills.i : [1..N]

till

MsgConnection[Ack]

MsgConnection[Info]

ack

DataBase

b.i : [1..N]

N:Natural

Figure 5: The System Architecture.

The communications are depiected in a communication diagram, see Figure 6, where graphic links
are added to the system architecture.

6 The Component Specifications

6.1 The Till Specification

The till component interface is described in Figure 7 page 13. It has several event ports, card ?Card
to insert the user card, card !Card to eject the card, pin ?PinNumber to enter the PIN, getSum
?Money to enter the desired cash amount, cash !Money to get money, add ?Money to allow an
operator to add money to the till available amount, rec ?MSG to receive a message from the connection,
and send !MSG to send a message.

The dynamic behaviour of the till is depicted in Figure 8 page 14. A transition such as cash !sum
/ giveCash(self) means that the till emits a sum of money and during this transition the card in
the till is tagged (the daily limit is increased) and the giveCash operation updates the amount of money
of the till datatype.

The TillADT is given in Figure 9 page 15 (for the operations definitions) and in Figure 10 page 38
(for the corresponding axioms).

In our example, the till component is generic on a MsgConnection component type. This con-
strains it to be connected, as far as the send and rec event ports are concerned, with a MsgConnection
component or any component that inherits from it. An example of genericity on datatypes is given in Fig-
ure 24 page 45, where the MsgConnection component is generic on the type of messages which transit
in the connection.

/Users/jroyer/Documents/CAS/CASHPOINT/FIGV2/TillSystemArchi.eps
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TillSystem

BankInterfaceTill

BankManager

DataBase

b.i

b.i

card ?Card

pin ?PinNumber

getSum ?Money b.i : [1..N]

TillLine

bmtills.i : [1..N]

data

MsgConnection[Ack]

MsgConnection[Info]

db

lock lock

send receive

receive send

send

rec

ack

send

add ?Money

cash !Money

get reply

giveCard !Card

till

till

till

data

ack

b.i

b.i

db

db

till.i.data

till.i.data

receive

N:Natural

⊕ [1..N]

⊕ [1..N]⊕ [1..N]

⊕ [1..N]

Figure 6: The Communication Diagram.

6.2 The MsgConnection Specification

From a given till to a bank interface there are two connections. The link from the till to the bank
carries informations (Info) about the client and the amount to withdraw. The opposite link is used
for acknowledgment (Ack) from the bank. The MsgConnection component describes a general and
simple media which assumes safe communications.

6.3 The Bank Specification

This specification is achieved by a central database with several interfaces. The database (DataBase)
has to abstract the client accounts and to manage N concurrent communications. Each one-way commu-

from ack to data

pin ?PinNumber

add ?Money

card ?Card
Till

send !Msgrec ?Msg

getSum ?Money cash !Money

card !Card

data, ack : MsgConnection

Figure 7: Component Interface Diagram of the Till.

/Users/jroyer/Documents/CAS/CASHPOINT/FIGV2/TillCom.pstex
/Users/jroyer/Documents/CAS/CASHPOINT/FIGV2/Till.eps
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[not check(self)] i

/ insertCard(self,c)
card ?c:Card

/ giveCash(self)cash !sum(self)

[check(self)]

/ addCash(self,s)
add ?s:Money

T1

T2

T4

T5

T7
card !card(self)

/ giveCard(self)

rec ?r:Ack

i / clock(self)

i / clock(self)

i / clock(self)

i / clock(self)

i / clock(self)

i / clock(self)

pin ?code:PinNumber

/ pin(self,code)

T3i / clock(self)

/ getSum(self,sum)

getSum ?sum:Money

/ keepCard(self)

swallowCard

T6

[pinOk(self)]

pin ?code:PinNumber

[retry(self)]
[fail(self)]

/ pin(self,code)

send !msgValidity(self)

[ack(self, r)]

rec ?r:Ack[not ack(self, r)]

/ new

Figure 8: Symbolic Transition System of the Till.

nication is performed through a bank interface (BankInterface).

Note the special transitions reply in the database STS, Figure 14 page 40 (a similar situation occurs
two times in the client STS). This transition stands for the following set of transitions:

Forall bi:Natural
[checked(self, bi, False)] reply !bi !False / unlock(self, bi)

Note that such a datatype description is possible for example in PVS and the * mechanism has been
implemented in our Python prototype for STS. This is used several times to code a non-deterministic
choice whose set of values can be computed by a function.

Note also that, in the system architecture Figure 5 page 12, there is only one port reply which is
connected to the get port of the bank interfaces. The guard iam is used to check if the communication
is really addressed to an interface (by checking its interface number).

6.4 A Client Specification

To perform some tests and verifications we use a simple abstract client with the STS described in Fig-
ure 19 page 43. It is not a closed system since we do not enforce a rigid client behaviour, the client may
perform actions in any order and with various output values.

/Users/jroyer/Documents/CAS/CASHPOINT/FIGV2/TillSTS.eps
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Sort Till
Imports Boolean, Natural, PinNumber, Money, Card, Ack, Info

Opns
/* generator for till */
newTill : Money x Card x PinNumber x Money Natural -> Till
/* add cash in the till */
addCash : Till x Money -> Till
/* card insertion */
insertCard : Till x Card -> Till
/* to type in the PIN */
pin : Till x PinNumber -> Till
/* choose a sum to withdraw */
getSum : Till x Money -> Till
/* get the cash */
giveCash : Till -> Till
/* give back card to user */
/* the till kept the card */
/* increase the clock number */
keepCard, card, clock : Till -> Till

/* variables observers */ /* guards */
sum : Till -> Money pinOk,retry,fail,check : Till -> Boolean
card : Till -> Card
code : Till -> PinNumber ack : Till, Ack -> Boolean
counter : Till -> Natural

/* other observers */
amount : Till -> Money
msgValidity : Till -> Info
date : Till -> Date

Figure 9: The Till Datatype (part I, operations).

6.5 Variables of Interest

This system has several interesting parameters which are useful for simulation or model-checking. These
are: MAX: maximum withdrawal for the clients, N: number of till, daily limit: maximum daily limit,
till amount: maximum of cash in a till, max ident: maximum number of clients, account
number: maximum number of accounts, and account max: maximum cash in an account. If a till
is not connected with a client it does not really participate in the global behaviour, the same is true with
other pairs of components. Hence we are interested in a global system with a database, N bank interfaces,
2*N links, N tills and N clients. The value N=2 is critical in the sense that it is necessary and sufficient
to check concurrent accesses to the bank accounts.

Our specification currently takes into account that a client may type in its PIN or a wrong one. He
may also select several amounts to withdraw (1..MAX), hence we consider daily limit = MAX. It
seems relevant to have MAX greater than both till amount and account max.
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7 Verifications

7.1 The SyCLAP API

In [11], we have proposed a prototype environment dedicated to KADL which follows two main princi-
ples: openness and extensibility. According to these principles, it provides a library for STS and transla-
tion mechanisms from KADL into other mixed formalisms (e.g. LOTOS, LP) whose goal is to interface
with tools (e.g. dynamic specification toolboxes such as CADP [20] or theorem provers such as the
Larch Prover). Since targetable formalisms/tools are numerous and evolve, our framework is based on a
class library reifying the different formalisms taken into account. This makes it extensible. Our goal was
also to provide general tools which can be useful to other environments or formalisms. An example is the
CLAP tool which can be used to compute synchronous compositions of any state-transition diagrams
(automata, Petri Nets, symbolic transition systems). Another important feature of this environment is the
ability to obtain concurrent object-oriented code (Active Java) from the KADL specifications [8].

The SyCLAP API is an implementation of STS, successor of CLAP, with the following functional-
ities:

• Definition of an LTS associated to a sequential system.

• Such an LTS may be completed by a datatype description (a Python class) yielding to a true STS.

• Such an STS allows, guards, emissions and receipts (n-ary but one-way), receipt on guards and the
* notation.

• SyCLAP allows the uniform definition of STS and LTS and the system may mixed in various ways
these notions. For instance to compute the configuration graph of an STS, this produces a LTS and
to synchronise it with another STS.

• The synchronous product of STS has been implemented allowing the definition of complex system
from architecture and sequential STS. One interesting aspect is the ability to keep inside all the
structural information of the components.

• The configuration graph computation and a boundedness checking have been implemented.

• Some simple verification means have been implemented: deadlock, state reachability and trace
computation.

Note that an ADT is manually translated into a Python class, since we are using a particular form of
ADT such a link is not difficult to establish and to automate. Our ADT defined one generator and
it corresponds to the class constructor (or class instanciation) we have in Python. Parameters of the
generator leads to instance variables with the associated selectors, thus other functions may be defined as
methods of this class. In addition we have some needs for the configuration computation, a deep equality
of class instances, the implementation of emitter and generator associated to symbol ! and ?. Such
a formal representation may be described using Hoare principles [21], one related references is [31].
As an illustration of the translation process, Subsection B gives the Python class corresponding to the
MsgConnection. A more sophisticated example is the DataBase, in this case we have to implement
the generators needing to process the * notations.

We have developed this prototype in Python, about 4000 lines of code and efficiency was not our
primary goal. We have already applied successfully our approach (boundedness, decomposition and
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model-checking) to several examples: a simple flight reservation system, several variants of the bakery
protocols, the slip protocol, several variants of a resource allocator, and a cash point service. Examples
and use of this prototype may be found in [33, 23, 29].

7.2 Some verifications with SyCLAP

These examples have been done to illustrate the use of the prototype, some of them may be done more
efficiently by interacting with a model-checker or using infinite state-based techniques. One interest of
this approach is that it seems simple and well-suited to component systems. Sometimes it is not efficient
but one known solution to get better results is to verify the property on the fly without computing the
global product.

The Figure 20 page 43 gives the global STS with one client and one bank interface, it gives an
abstract and readable view of the dynamic system. Such a view is useful to early check some errors in
the dynamic behaviours especially related to the event synchronisations.

One may also check reachability of some configurations and to produce a graphic trace describing
the event and the precise value context. As an example the Figure 21 page 44 depicts a situation where
the client first gets some money and then he retries to withdraw, he fails to type in three times its PIN
and its card is kept by the till.

In the following verifications we used sometimes the fact that abstracting one component of a com-
position defines an abstraction of the product.

1. We compute the global STS with one and two tills and then we calculate the configuration graph
for some set of values. Since we do not completely model the client some bad situations occur.
After a swallowCard the only outgoing transition is a clock which means that the system has
a livelock. We verified that states with only one clock are exactly targets of a swallowCard
event. But these cases are only due to the fact that the till keeps the client card after three successive
wrong PINs (this is a lack in the requirements). They disappear with a more advanced client STS
adding an action to get back the card. We also checked three additional properties: the PIN counter
is equal to three after a swallowCard, the database amount and the till amount are always greater
or equal than zero. We check these properties forN = 1, 2 and small values for the other variables.

N=1, account number=2, daily limit=MAX, STS product=(11, 27)

account max till amount MAX size CFG time (s)
1 1 1 (126, 266) 0.69
2 2 2 (698, 1586) 6.7
2 3 4 (2348, 5950) 66.3
3 3 3 (2292, 5576) 66.75
5 2 2 (698, 1586) 10.9

10 2 2 (698, 1586) 11.5
10 3 2 (1574, 3570) 27.21
10 2 3 (994, 2434) 15.11
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N=2, account number=2, daily limit=MAX, STS product=(121, 594)

account max till amount MAX1 MAX2 size CFG time (s)
0 1 0 0 (324, 1224) 6.25
0 1 1 0 (1692, 6724) 50.27
0 1 1 1 (8872, 36992) 997.
1 1 1 1 (15912, 67176) 3434.

2. Our objective was to prove that the system ensures an exclusive access to any bank account (which
is a safety property). We check the part corresponding to the database and bank interfaces and ab-
stract the rest of the system. We define a component devoted to the simulation of the tills, the clients
and the communication links. A bad situation would be two clients with the same account number
withdrawing via two distinct interfaces. Experiments are not efficient so we apply an abstraction
method presented in [28, 29]. First we remark that the database contains the client accounts and
the informations related to communications. We observe that type Informations is equivalent
List[Natural x Ident] x List[Natural x Money]. From this, a decomposition
as defined in [29] exists. More precisely we keep the same system as above except the datatype
of the database which is redefined to only operate on List[Natural x Ident]. Using the
decomposition method we prove that the property yields with N=2, account number=10, MAX=3
and N=3, account number=4, MAX=2 and without a specific value for the max of accounts.

N MAX account number size CFG time (s)
2 2 1 (52, 118)
2 2 2 (193, 564)
2 2 10 (4561, 24580) 405.
2 3 1 (177, 484) 1.6
2 3 2 (713, 2568) 6.7
2 3 10 (17961, 145960) 10727.
3 2 1 (309, 966) 3.2
3 2 2 (2351, 9978) 120
3 2 4 (19461, 107292) 10419
3 3 1 (1895, 7290) 75.

3. Abstraction techniques such as [12, 5, 13, 25] may be used in our context, but currently with a
manual transformation. Some abstractions are simple to perform on our STS either on the LTS
part or the data part, a comprehensive analysis is under study. For example we want to check that
an existing card is either owned by the proper client or by its connected till or lost. This safety
property is proved by abstracting the data of the system into the card identity which is also the
client id. The global product has been done for N=1, 2 and 3 without choosing effective numbers
for the other parameters. The configuration graphs are bounded and the property is checked using
an ad-hoc procedure.

N size CFG temps (s)
N=1 (24, 56) 1.58
N=2 (576, 2688) 5.17
N=3 (13824, 96768) 3876.73
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Our specification approach is able to take into account a variable number of components, however the
bounded analysis is more difficult to perform. In such a case techniques for infinite systems, as for
examples [14, 19] seem more adequate.

7.3 Other Verifications

Our approach based on SyCLAP may be viewed as a complementary technique to other existing ones:
model-checking, abstractions, infinite system approaches and use of theorem provers.

One design of this case study has been done with LOTOS and the CADP toolbox. The LOTOS
description of the processes appears in Section A. The LOTOS description is closed to our KADL
description and an automated translation is even possible. However CADP needs to bound data types, we
use really strict bounds and we cannot compute the BCG representation (internal LOTOS representation)
even with one client and one till.

8 Preliminary Comparisons with Model-Checking

The main objective of this section is to present some precise examples comparing our symbolic approach
with more traditional finite state approaches. More specifically, we have done several experiments with
the LOTOS language and the CADP toolbox. We begin with a first example and we try to justify our point
of view. Our approach is simply a complementary way to analyse systems, there is no strict separation
between both.

8.1 Application to Finite-State Systems

We consider a simple example, see Fig. 22, with two components which synchronise on (emit, get)
and their bounded product. This example has been encoded in LOTOS. The global LTS computed using
CADP with M = 200 is made up of 401 states and 400 transitions. Using our prototype, we get the
same result in 1 second (product+unfolding).

CADP arbitrary bounds natural numbers to 256, this is the reason why we used a value smaller
than 256 for M . But bounded analysis allows the computation of the two STS product and to check its
boundedness for bigger values. Our prototype computes the product and builds the configuration graph
of this example. Whenever the bounds set by model-checking tools are reached, the specifier does not
know if its system is either too big for the tool or really unbounded. In such a case, bounded analysis
may be successful and complements model-checking, for example it can provide the exact bounds to
optimise the generation of the state system. The problem here is that the system is obviously manageable
for bigger values than 256. But due to a lack of flexibility and parameterisation CADP cannot go further
than this value. Our experience shows that it is simple and useful to try another way to proceed such an
example.

8.2 A General View of the Two Approaches

In a first setting let us assume that the global computation of the system is needed. This is sometimes
useful for some verifications. Figure 23 gives an overall picture of model-checking and STS.

This diagram uses two transformations, the synchronous product and the unfolding of STS. The path
(a) takes several STSs and produces a configuration graph, that is the way we are illustrating here. The
other way (b) is related to a more classical model-checking approach. Both ways are equivalent from a
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theoretical expressive power but from a practical point of view time and space may be different. First it is
surely undecidable to know which way will be the more efficient in the general case. Results are needed
here to provide guidelines for specifiers. The space problem is the following: the final configuration
result may have a manageable size however one of its component is too wide or infinite. In this case
model-checking will failed. The boundedness property may be used to know if a configuration graph is
finite and it may also provide a more or less precise measure of its size.

Now if we consider on-the-fly model-checking this technique checks a property and only builds the
required part of the configuration graph. Such technique improves efficiency but it seems also possible
to apply it in the context of STS, thus avoiding the global computation of the synchronous product.

8.3 Application to Infinite State Systems

In [29] we have shown several examples where usual model-checking fails but our bounded analysis, as
abstraction technique, can be useful on finite systems as well as on infinite ones. Whenever the bounds
set by model-checking tools are reached, the specifier does not know if his system is either too big for
the tool or really unbounded. In such a case, bounded analysis is successful and complements model-
checking.

We have two examples related to a resource allocator, but the more demonstrative and simple one is
a mutual exclusion algorithm protocol inspired by the ticket protocol as described in [14]. Our prototype
succeeds in generating the global system (then checking mutual exclusion) up to 9 clients whereas CADP
and SPIN (with the default configuration values and bounded data types, e.g. natural numbers bounded
to 256) do not pass 6 clients. The resulting product (for 8 clients) is made up of 6561 states and 52488
transitions; the configuration graph contains 1280 states and 6656 transitions. A similar analysis is
possible with other protocols, as we did with the Bakery mutual exclusion algorithm [15]. Finally, we
stress out that our primary goal while implementing the prototype was the validation of the paper ideas.
In particular, efficiency has to be improved, and is not satisfactory by now for several reasons: strongly
dependent of Python high-level data structures, interpreted code wrt compiled code, no optimizing, etc.

The experiments done on the Cash Point case study show that our approach is useful. In fact the
verification based on CADP failed due to to the high inter-relation between behavioural and the data
types aspects in this case study.

Model-checking is an efficient way to automatically prove properties on finite-state systems. How-
ever our analysis may provide the following benefits:

• an abstract and often readable description of the global system can be figured out,

• early checking can be performed on this bounded description (boundedness, deadlocks, ...), and in
some cases,

• when model-checking fails on the initial specification, the configuration graph may be computed
and model-checked.

This shows that bounded analysis and decomposition are useful, but often it must be connected with
classic model-checking or other proof techniques.

9 Communication Problems

This section gives a simple view of the design of an unsafe communication link.
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9.1 The DropMsgConnection Specification

The DropMsgConnection component is a simple media which may be down or up. An example of
inheritance in KADL is given in the left-hand part of Figure 24 page 45 where the MsgConnection
(media) and the DropMsgConnection (media with failure) are related using the UML notation for
generalization (white arrow). Failure is modeled by a special down port. This method may also be
used to take into account the creation or deletion of components. The inheritance relation between the
components behaviours (STS) is given in the right-hand part of Figure 24 page 45.

From that we may detect wrong situations, for instance a successfully bank request but without the
corresponding money delivered to the client. The problem is that communications may be down now.
Thus a safe system must ensure that the account bank decreasing action and the cash delivery occur in a
transaction.

10 Related Work

A special issue [16] is devoted to this case study, we quote below several of the approaches. One
central point for us is the specification of communicating components and the need to express a commu-
nication architecture.

In [34] the banking system is described with different hierarchical descriptions for structure and
behaviour. The model is based on a finite functional description of datatypes and behaviour are described
by state transition diagrams. They do not explicit the database, but a communication architecture is
given. The dynamic formalism used is closed to the STS notion. They used several tools mainly based
on model-checking and simulation to verify the specifications.

In [17] a real-time, hierarchical and graphical formalism is used. There is a communication architec-
ture and many time constraints are specified. The communication mode is asynchronous with channels.
However the formalism with too many variables is not readable, furthermore we think that this approach
needs too many time constraints not explicit in the case study. Several properties, using timed model-
checking, are proved but there is nothing related to the global consistency of the system.

The used of UML for such a system have been criticised, see for example [24, 10, 6]. The description
in [18] is too centralised and gives an abstract implementation structure with classes rather than a com-
munication architecture. Another difficulty is that UML is complex and needs several complementary
formalisms, the authors used Z and Lustre. One consequence is the absence of global consistency for
the system. The authors think that it is a good point to do not precise the communication mode. How-
ever communication mode and runtime mode are important features which have a great impact on the
semantics and the behaviour of a system.

[1] specifies this system with a functional language. There is no communication architecture and the
hierarchy of modules is not sufficient for that. As with UML it explicits the design of the system not
necessarily the communications between components. There is neither a graphical nor an abstract view
of the system architecture. This style is not well-suited to dynamic system and some tricks are needed to
complete the specifications.

With comparison to the previous work we add a more precise management of the card, the three
tests for the pin and the checking of several values. Note also that our specifications catches several
cases of non-determinism: right and wrong pin codes, withdraw of different values and wrong or right
acknowledgment from the bank. This is expressed using the specific * notation. We avoid request
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canceled by the client since it does not appear in the informal requirements. We do not check and keep
wrong cards, but this is easy to add as a new till transition.

11 Conclusion

Readability of our specifications is improved by the used of several complementary diagrams, special
emphasis is put on the communication architecture and the STS. Note also that the range notation and
genericity are interesting features. To specify an atomic system the conjunction of a state machine and a
datatype allows a great flexibility, we may balance the control part or the computation part in a consistent
manner. The use of the * notation permits to easily catch value non-determinism. STS (or process
algebras) are surely the good mean to describe simple component. However to specify architecture of
communicating components we consider that a modal logic approach is better since it expresses abstract
properties of the global system. This is why we propose a modal logic, with some graphical notations,
to express the meaning of communication. This modal logic is rather sophisticated generally a subset of
the operators is needed.

With reference to other approaches we provide a structured and readable approach with an homoge-
neous semantics. Here we focus on tools based on model-checking but theorem provers are also possible,
see [30, 2].

Some time constraints may be represented in our specifications, for instance the day changing or the
timeout connection. To represent full time constraints seems possible and to adapt the principles of timed
automata but is it still a future idea. Another area of improvements is to integrate abstraction techniques
in our STS and the related tools.
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A The Cash-Point Description in LOTOS

(* messages:
0 : "take your card back"
1 : "take your money"
2 : "wrong pin code - card swallowed"
3 : "limit exceded or not enough money in till"
4 : "no authorization from bank"

*)

process TILL [card,pin,getSum,add,rec,send,cash,message](self:Till) : noexit :=

hide clock in (
TILL_T1 [card,pin,getSum,add,rec,send,cash,message,clock](self)

)

where

process TILL_T1 [card,pin,getSum,add,rec,send,cash,message,clock](self:Till) : noexit :=
clock ; TILL_T1 [card,pin,getSum,add,rec,send,cash,message,clock](clock(self))

[]
card?c:Card [(id(c) eq 2) and (sum(c) le max(c))] ;

TILL_T2 [card,pin,getSum,add,rec,send,cash,message,clock](insertCard(self,c))
endproc

process TILL_T2 [card,pin,getSum,add,rec,send,cash,message,clock](self:Till) : noexit :=
clock ; TILL_T2 [card,pin,getSum,add,rec,send,cash,message,clock](clock(self))

[]
pin?code:PINNumber ;

TILL_T3 [card,pin,getSum,add,rec,send,cash,message,clock](pin(self,code))
endproc

process TILL_T3 [card,pin,getSum,add,rec,send,cash,message,clock](self:Till) : noexit :=
clock ; TILL_T3 [card,pin,getSum,add,rec,send,cash,message,clock](clock(self))

[]
[c1(self)] -> getSum?sum:Money [sum gt 0];

TILL_T6 [card,pin,getSum,add,rec,send,cash,message,clock](getSum(self,sum))
[]

[not(c1(self))] -> pin?code:PINNumber ;
TILL_T4 [card,pin,getSum,add,rec,send,cash,message,clock](pin(self,code))

endproc

process TILL_T4 [card,pin,getSum,add,rec,send,cash,message,clock](self:Till) : noexit :=
clock ; TILL_T4 [card,pin,getSum,add,rec,send,cash,message,clock](clock(self))

[]
[c1(self)] -> getSum?sum:Money [sum gt 0];

TILL_T6 [card,pin,getSum,add,rec,send,cash,message,clock](getSum(self,sum))
[]

[not(c1(self))] -> pin?code:PINNumber ;
TILL_T5 [card,pin,getSum,add,rec,send,cash,message,clock](pin(self,code))

endproc

process TILL_T5 [card,pin,getSum,add,rec,send,cash,message,clock](self:Till) : noexit :=
clock ; TILL_T5 [card,pin,getSum,add,rec,send,cash,message,clock](clock(self))

[]
[c1(self)] -> getSum?sum:Money [sum gt 0];

TILL_T6 [card,pin,getSum,add,rec,send,cash,message,clock](getSum(self,sum))
[]

[not(c1(self))] -> message!2 of Nat ;
TILL_T1 [card,pin,getSum,add,rec,send,cash,message,clock](keepCard(self))

endproc

process TILL_T6 [card,pin,getSum,add,rec,send,cash,message,clock](self:Till) : noexit :=
clock ; TILL_T6 [card,pin,getSum,add,rec,send,cash,message,clock](clock(self))



26

[]
[c2(self)] -> send!msgValidity(self) ;

TILL_T7 [card,pin,getSum,add,rec,send,cash,message,clock](self)
[]

[not(c2(self))] -> message!3 of Nat ;
TILL_T9 [card,pin,getSum,add,rec,send,cash,message,clock](self)

endproc

process TILL_T7 [card,pin,getSum,add,rec,send,cash,message,clock](self:Till) : noexit :=
clock ; TILL_T7 [card,pin,getSum,add,rec,send,cash,message,clock](clock(self))

[]
rec?r:Ack [c3(self,r)] ;

TILL_T8 [card,pin,getSum,add,rec,send,cash,message,clock](self)
[]

rec?r:Ack [not(c3(self,r))] ; message!4 of Nat ;
TILL_T9 [card,pin,getSum,add,rec,send,cash,message,clock](self)

endproc

process TILL_T8 [card,pin,getSum,add,rec,send,cash,message,clock](self:Till) : noexit :=
clock ; TILL_T8 [card,pin,getSum,add,rec,send,cash,message,clock](clock(self))

[]
message!1 of Nat ; cash!sum(self) ;

TILL_T9 [card,pin,getSum,add,rec,send,cash,message,clock](giveCash(self))
endproc

process TILL_T9 [card,pin,getSum,add,rec,send,cash,message,clock](self:Till) : noexit :=
clock ; TILL_T9 [card,pin,getSum,add,rec,send,cash,message,clock](clock(self))

[]
message!0 of Nat; card!card(self) ;

TILL_T1 [card,pin,getSum,add,rec,send,cash,message,clock](giveCard(self))
endproc

endproc

type Till is PINNumber, Money, Card, Ack, Info

sorts Till

opns
newTill (*! constructor *) : Money, Card, PINNumber, Money, Date -> Till

(* transition constructors *)
addCash : Till, Money -> Till
insertCard : Till, Card -> Till
pin : Till, PINNumber -> Till
getSum : Till, Money -> Till
giveCash,
keepCard,
giveCard,
clock : Till -> Till

(* variable observers -- selectors *)
amount : Till -> Money
card : Till -> Card
code : Till -> PINNumber
sum : Till -> Money
date : Till -> Date

(* other observers *)
msgValidity : Till -> Info

(* transition guards *)
c1 : Till -> Bool
c2 : Till -> Bool
c3 : Till, Ack -> Bool
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(* helpers *)
enoughMoneyInside : Till -> Bool
cardConditions : Till -> Bool
sameDate : Till -> Bool

eqns
forall self:Till,

a,a1,sum,sum1:Money,
c,c1:Card,
code,code1:PINNumber,
today:Date,
r:Ack

(* transition constructors *)
ofsort Till

addCash(newTill(a,c,code,sum,today),a1) = newTill(a+a1,c,code,sum,today);
insertCard(newTill(a,c,code,sum,today),c1) = newTill(a,c1,code,sum,today);
pin(newTill(a,c,code,sum,today),code1) = newTill(a,c,code1,sum,today);
getSum(newTill(a,c,code,sum,today),sum1) = newTill(a,c,code,sum1,today);
giveCash(newTill(a,c,code,sum,today)) =

newTill(a-sum,update(c,sum,today),code,sum,today);
giveCard(newTill(a,c,code,sum,today)) = newTill(a,newCard(0,0,0,0,0),code,sum,today);
keepCard(newTill(a,c,code,sum,today)) = newTill(a,newCard(0,0,0,0,0),code,sum,today);
(today eq 0) => clock(newTill(a,c,code,sum,today)) = newTill(a,c,code,sum,1);
(today eq 1) => clock(newTill(a,c,code,sum,today)) = newTill(a,c,code,sum,0);

(* variable observers -- selectors *)
ofsort Money

amount(newTill(a,c,code,sum,today)) = a;
ofsort Card

card(newTill(a,c,code,sum,today)) = c;
ofsort PINNumber

code(newTill(a,c,code,sum,today)) = code;
ofsort Money

sum(newTill(a,c,code,sum,today)) = sum;
ofsort Date

date(newTill(a,c,code,sum,today)) = today;

(* other observers *)
ofsort Info

msgValidity(self) = newInfo(id(card(self)),sum(self));

(* helpers *)
ofsort Bool

sameDate(self) = last(card(self)) eq date(self);
enoughMoneyInside(self) = (sum(self) le amount(self));
cardConditions(self) = (sameDate(self) and

( (sum(card(self))+sum(self) ) le max(card(self)) ))
or (not(sameDate(self)) and ( sum(self) le max(card(self)) ));

(* transition guards *)
ofsort Bool

c1(self) = (crypt(code(self)) eq code(card(self)));
c2(self) = (enoughMoneyInside(self) and cardConditions(self));
c3(self,r) = isOk(r);

endtype

process ACKCONNECTION [receive,send](self:AckConnection) : noexit :=

ACKCONNECTION_D1 [receive,send](self)

where
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process ACKCONNECTION_D1 [receive,send](self:AckConnection) : noexit :=
receive?m:Ack ; ACKCONNECTION_D2 [receive,send](push(self,m))

endproc

process ACKCONNECTION_D2 [receive,send](self:AckConnection) : noexit :=
send!top(self) ; ACKCONNECTION_D1 [receive,send](pop(self))

endproc

endproc

type AckConnection is Ack

sorts AckConnection

opns
newAckConnection (*! constructor *) : -> AckConnection
push (*! constructor *) : AckConnection, Ack -> AckConnection
pop : AckConnection -> AckConnection
top : AckConnection -> Ack

eqns
forall self:AckConnection, m:Ack

ofsort AckConnection
pop(push(self,m)) = self;

ofsort Ack
top(push(self,m)) = m;

endtype

process INFOCONNECTION [receive,send](self:InfoConnection) : noexit :=

INFOCONNECTION_D1 [receive,send](self)

where

process INFOCONNECTION_D1 [receive,send](self:InfoConnection) : noexit :=
receive?m:Info ; INFOCONNECTION_D2 [receive,send](push(self,m))

endproc

process INFOCONNECTION_D2 [receive,send](self:InfoConnection) : noexit :=
send!top(self) ; INFOCONNECTION_D1 [receive,send](pop(self))

endproc

endproc

type InfoConnection is Info

sorts InfoConnection

opns
newInfoConnection (*! constructor *) : -> InfoConnection
push (*! constructor *) : InfoConnection, Info -> InfoConnection
pop : InfoConnection -> InfoConnection
top : InfoConnection -> Info

eqns
forall self:InfoConnection, m:Info

ofsort InfoConnection
pop(push(self,m)) = self;
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ofsort Info
top(push(self,m)) = m;

endtype

process DATABASE [lock,check,reply] (self:Database) : noexit :=

DATABASE_DB1 [lock,check,reply] (self)

where

process DATABASE_DB1 [lock,check,reply] (self:Database) : noexit :=
check?n:Nat?s:Money [isLocked(self,n)] ;

DATABASE_DB1 [lock,check,reply] (check(self,n,s))
[]

lock?n:Nat?id:Ident [not(locked(self,id))] ;
DATABASE_DB1 [lock,check,reply] (lock(self,n,id))

[]
reply?n:Nat!nok [not(isOk(checked(self,n)))] ;

DATABASE_DB1 [lock,check,reply] (unlock(self,n))
[]

reply?n:Nat!ok [isOk(checked(self,n))] ;
DATABASE_DB1 [lock,check,reply] (unlock(withdraw(self,n),n))

endproc

endproc

type Database is Accounts, Informations, Ack

sorts Database

opns
newDatabase (*! constructor *) : Accounts, Informations -> Database

lock : Database, Nat, Ident -> Database
check : Database, Nat, Money -> Database
unlock : Database, Nat -> Database
withdraw : Database, Nat -> Database

locked : Database, Ident -> Bool
isLocked : Database, Nat -> Bool
checked : Database, Nat -> Ack

eqns
forall accounts:Accounts, infos:Informations, n:Nat, id:Ident, s:Money

ofsort Database
lock(newDatabase(accounts,infos),n,id) =

newDatabase(accounts,insert(newInformation(n,id,0),infos));
check(newDatabase(accounts,infos),n,s) =

newDatabase(accounts,assign(infos,n,s));
unlock(newDatabase(accounts,infos),n) =

newDatabase(accounts,remove(infos,n));
withdraw(newDatabase(accounts,infos),n)=

newDatabase(withdraw(accounts,client(infos,n),sum(infos,n)),infos)
(* withdraw should be called before unlock *)

ofSort Bool
locked(newDatabase(accounts,infos),id) = isIn(infos,id);
isLocked(newDatabase(accounts,infos),n) = hasKey(infos,n);

ofSort Ack
((hasKey(infos,n)) and ((sum(infos,n))>0)) and
((account(accounts,client(infos,n))) >= (sum(infos,n)))

=> checked(newDatabase(accounts,infos),n) = ok;
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not(((hasKey(infos,n)) and ((sum(infos,n))>0)) and
((account(accounts,client(infos,n))) >= (sum(infos,n))))

=> checked(newDatabase(accounts,infos),n) = nok;

endtype

process BANKINTERFACE [receive,lock,check,get,send] (self:BankInterface) : noexit :=

BANKINTERFACE_B1 [receive,lock,check,get,send] (self)

where

process BANKINTERFACE_B1 [receive,lock,check,get,send] (self:BankInterface) : noexit :=
receive?info:Info ; BANKINTERFACE_B2 [receive,lock,check,get,send] (receive(self,info))

endproc

process BANKINTERFACE_B2 [receive,lock,check,get,send] (self:BankInterface) : noexit :=
lock!ident(self)!client(info(self)) ;

BANKINTERFACE_B3 [receive,lock,check,get,send] (self)
endproc

process BANKINTERFACE_B3 [receive,lock,check,get,send] (self:BankInterface) : noexit :=
check!ident(self)!sum(info(self)) ;

BANKINTERFACE_B4 [receive,lock,check,get,send] (self)
endproc

process BANKINTERFACE_B4 [receive,lock,check,get,send] (self:BankInterface) : noexit :=
get?bi:Nat?a:Ack [iam(self,bi)] ;

BANKINTERFACE_B5 [receive,lock,check,get,send] (get(self,a))
endproc

process BANKINTERFACE_B5 [receive,lock,check,get,send] (self:BankInterface) : noexit :=
send!ack(self) ; BANKINTERFACE_B1 [receive,lock,check,get,send] (self)

endproc

endproc

type BankInterface is Natural, Info, Ack

sorts BankInterface

opns
newBankInterface (*! constructor *) : Nat, Info, Ack -> BankInterface

receive : BankInterface, Info -> BankInterface
get : BankInterface, Ack -> BankInterface

ack : BankInterface -> Ack
ident : BankInterface -> Nat
info : BankInterface -> Info

iam : BankInterface, Nat -> Bool

eqns
forall self:BankInterface, n,n1:Nat, info,info1:Info, a,a1:Ack

ofSort BankInterface
receive(newBankInterface(n,info,a),info1) = newBankInterface(n,info1,a);
get(newBankInterface(n,info,a),a1) = newBankInterface(n,info,a1);

ofSort Ack
ack(newBankInterface(n,info,a)) = a;

ofSort Nat
ident(newBankInterface(n,info,a)) = n;
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ofSort Info
info(newBankInterface(n,info,a)) = info;

ofSort Bool
iam(self,n1) = (ident(self) eq n1);

endtype

process CLIENT [card,pin,getSum,cash,message] (c:Card,hasCard:Bool) : noexit :=

[hasCard] => card!c!true ; CLIENT [card,pin,getSum,cash,message] (c,false)
[]

pin!pin(c) ; CLIENT [card,pin,getSum,cash,message] (c,hasCard)
[]

getSum?s:Money [s gt 0] ; CLIENT [card,pin,getSum,cash,message] (c,hasCard)
[]

[not(hasCard)] => card?newc!false ; CLIENT [card,pin,getSum,cash,message] (newc,true)
[]

cash?s:Money ; CLIENT [card,pin,getSum,cash,message] (c,hasCard)
[]

message?info:Nat ; CLIENT [card,pin,getSum,cash,message] (c,hasCard)

endproc

(*

SYSTEM TILL

v1

N = 1
(un seul Till, une seule TillLine, une seule BankInterface)

Structuration de l’architecture modifiée

*)

specification SYSTEM [card,pin,getSum,add,cash,message (* TILL *)
] : noexit

library
(* basic imports *)
Boolean, Natural,
(* simple ADT *)
Money, Date, Ident, PINNumber, Card,
Info, Ack, Account, Information,
Accounts, Informations,
(* component ADT *)
Till,
AckConnection, InfoConnection, (* use genericity instead ?? *)
BankInterface,
Database

endlib

behaviour

let account1:Account = newAccount(1,1),
account2:Account = newAccount(2,2)

in
let

initial_accounts:Accounts = insert(account1,insert(account2,newAccounts))
in (
hide X5,X6,X7 in (

(hide X3, X4 in (
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(hide X1,X2 in (
TILL [card,pin,getSum,add,X2,X1,cash,message]

(newTill(2,newCard(0,0,0,0,0),0,0,0))
|[X1,X2]|

(
INFOCONNECTION [X1,X3] (newInfoConnection)
|||
ACKCONNECTION [X4,X2] (newAckConnection)
)

))
|[X3,X4]|

BANKINTERFACE [X3,X5,X6,X7,X4] (newBankInterface(0,newInfo(0,0),ok))
))
|[X5,X6,X7]|

DATABASE [X5,X6,X7]
(newDatabase(initial_accounts,newInformations))

)
)

where
library

PROC_TILL, (* card,pin,getSum,add,rec,send,cash *)
(* CONNECTIONS, use genericity instead ?? *)
PROC_ACKCONNECTION, (* receive,send *)
PROC_INFOCONNECTION, (* receive,send *)
PROC_BANKINTERFACE, (* receive,lock,check,get,send *)
PROC_DATABASE (* lock,check,reply *)

endlib

endspec

B Representation in Python

The principles to translate an STS in SyCLAP are to build a textual representation of the transition
system (.aut file) and a Python class representing the ADT (.py file). The translation from an ADT
into a class Python is straightforward as illustrated with the pattern describes below. One important
difference between both is that ADTs have a pure functional semantics while the Python classes have
an imperative one. Before applying an action to an object the configuration graph algorithm creates a
copy of the instance, applies the action and returns the result. Thus this achieves that the class with the
copy mechanism has a pure functional semantics. However, as the reader may see it in the two next
examples, some additional features are needed. These features are required by the SyCLAP system to
compute configurations and to resolve the communications between the components. A transition action
in the STS has an associated method with the same name, and if it is a receiver, it has one parameter for
each value receipt. A transition guard is implemented by a pure boolean function with the same name.
Emissions are done using pure functional methods returning a list of values. Communications are one
way and multiple emissions are groups into lists of values. The * operator is viewed as an iteration
mechanism over lists of values. It is implemented by the used of loops, slicing and map operators.

B.1 The Translation Pattern

The previous grammar (cf Section 3) is a general one, we adopt some methodological rules to build the
ADT. In few words, we expect them defining total functions and we consider only one basic generator.
Criterion coming from sufficient completeness requires that we defined the operations over the generator.
In our prototype, see below, we define the Name sort and some imported datatypes. There is only one
generator (newName), one constructor, one observer and an equality function.
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/* a prototype ADT example */

Sort Name

Imports Boolean, T1, ..., Tn

Opns
/* generator of the sort */
newName : R1 x ... x Rs -> Name

/* a constructor operation */
op1 : Name x A1 x ... x Al -> Name

/* an observer */
op2 : Name x B1 X .. x Bm -> Ti

/* an equality boolean function */
equals : Name x Name -> Boolean

Variables

self : Name ; x1 : R1 ; ... ; xs : Rs ; y1 : R1 ; ... ; ys : Rs ;
a1 : A1 ; ... ; al : Al ; b1 : B1 ; ... ; bm : Bm ;

Axioms

cond1 => op1(self, a1, ..., al)) = newName(rt1, ..., rts)

cond2 => op2(self, b1, ..., bm)) = rtz

equals(newName(x1, ..., xs), newName(y1, ..., ys))
= equals(x1, y1) and ... and equals(xs, ys)

We have axioms for each operation, in the general case there are more than one per operation, condi
and rti are algebraic terms. If we note translate the translation of an algebraic term into its Python
equivalent expression we get the following Python class.

#-----------------------
# Name.py
# 3/10/2006
# the translation of the prototype ADT
#---------------------

import T1
...

import Tn
import R1

...
import Rs
import A1

...
import Al
import B1

...
import Bm
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class Data(Data.Data):

#----------------
# the x1 instance variable
def set_x1(self, t):

self.x1 = t
# -----

...

#----------------
# the xs instance variable
def set_xs(self, t):

self.xs = t
# -----

#----------------
# initialisation
def __init__(self, values=[]):

self.x1 = p1
...
self.xs = ps

# -----

#----------------
# textual representation
def __str__(self):

return str(self.x1) + " " + ... + " " + str(self.xs)
#----------------

#--------------------
# deep equality to compare configurations
def deep_equal(self, other):

return self.x1 == other.x1 AND ... AND self.xs == other.xs
#--------------------

# ------------------------
# op1 translation
def op1(self, a1, ..., al):

if (translate<cond1>):
self.set_x1(translate<rt1>)
...
self.set_xs(translate<rts>)

# ------------------------

# ------------------------
# op2 translation
def op2(self, b1, ..., bm):

if (translate<cond2>):
return translate<rt2>

# ------------------------

#fin Data -----------------

We define a class with as instances variables the arguments of the generator. We also add a tex-
tual representation and an initialisation operator where p1, ..., ps are initial values coming from
the global context. The equality function has a simple translation. An observer has a translation into
a if then return structure. Multiple conditional axioms leads to if then else if control
structures.

B.2 The Python Class: MsgConnection
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#-----------------------
# MONCLAP3/CASH2/GLOBAL/MsgConnection.py
# 2/10/2006
#---------------------

__author__ = "JCR"
__version__ = "3.0"

import Dico

class Data(Dico.Dico):
print ’Chargement de la classe CASH2/GLOBAL/MsgConnection’

#----------------
# msg is either Info or Ack, but Python is dynamically type-checked
def set_msg(self, i):

self.msg = i
# ----- fin

#----------------
# initialisation
def __init__(self, values=[]):

self.msg = 0 # the void message
# ----- fin init

#----------------
# textual representation
def __str__(self):

return " " + str(self.msg)
#----------------

#--------------------
# deep equality to compare configurations
def deep_equal(self, other):

return self.msg == other.msg
#--------------------

# ------------------------
# emitter of the top message
def top(self):

return [self.msg]
# ------------------------

# --- actions ----------
# ------------------------
# implementation of push
def receive(self, i):

self.set_msg(i)
# ------------------------

# ------------------------
# implementation of pop
def send(self):

self.set_msg(0)
# ------------------------

#fin Data -----------------

B.3 The Python Class: DataBase

#-----------------------
# MONCLAP3/CASH2/GLOBAL/DataBase.py
# 2/10/2006
#---------------------
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__author__ = "JCR"
__version__ = "3.0"

import Dico
import Informations

class Data(Dico.Dico):
print ’Chargement de la classe CASH2/GLOBAL/DataBase’

#----------------
# list of accounts
def set_accounts(self, a):

self.accounts = a
# informations
def set_info(self, inf):

self.info = inf
# ----- fin

#----------------
# initialisation
def __init__(self, values=[]):

self.set_accounts(values[0])
self.set_info(Informations.Informations())

# ----- fin init

#----------------
# external representation
def __str__(self):

return "DB|" + str(self.accounts) + " " + str(self.info) + "|"
#----------------

#--------------------
# deep equality
def deep_equal(self, other):

return (self.accounts.deep_equal(other.accounts)) and (self.info.deep_equal(other.info))
#--------------------

# ------------------------
# a guard
def notLocked(self, bi, cli, s):

return not self.info.isIn(cli)
# ------------------------

# ------------------------
# generator for *[bi True]
def checked(self):

tmp = []
for biclis in self.info.tuples:

if (biclis[2] > 0) and (biclis[2] <= self.accounts.account(biclis[1])):
tmp = tmp + [[biclis[0], True]]

return tmp
# ------------------------

# ------------------------
# generator for *[bi True]
def notChecked(self):

tmp = []
for biclis in self.info.tuples:

if (biclis[2] > 0) and (biclis[2] > self.accounts.account(biclis[1])):
tmp = tmp + [[biclis[0], False]]

return tmp
# ------------------------

# ------------------------
def lock(self, bi, cli, s):
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self.info.cons(bi, cli, s)
# ------------------------

# ------------------------
# reply / unlock
def replyU(self, bi, ack):

self.info.remove(bi)
# ------------------------

# ------------------------
# reply / widthdraw + unlock
def reply(self, bi, ack):

self.accounts.withdraw(self.info.client(bi), self.info.sum(bi))
self.info.remove(bi)

# ------------------------

#fin Data -----------------
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Variables

a,sum,a1,sum1:Money; c,c1:Card; code,code1,code2:PinNumber;
r:Ack; ,today,today1,today2:Date ; cpt : Natural; self:Till

Axioms

addCash(newTill(a,c,code,sum,today,cpt),a1) = newTill(a+a1,c,code,sum,today,cpt)
insertCard(newTill(a,c,code,sum,today,cpt),c2) = newTill(a,c2,code,sum,today,0)
pin(newTill(a,c,code,sum,today,cpt),code2) = newTill(a,c,code2,sum,today,1+cpt)
getSum(newTill(a,c,code,sum,today,cpt),sum2) = newTill(a,c,code,sum2,today,cpt)
giveCash(newTill(a,c,code,sum,today,cpt)) =

newTill(a-sum,updateDailyLimit(card(self),sum,today),code,sum,today,cpt)
giveCard(newTill(a,c,code,sum,today,cpt)) = newTill(a, noCard, code, sum,today,cpt)
keepCard(newTill(a,c,code,sum,today,cpt)) = newTill(a, noCard, code, sum,today,cpt)
clock(newTill(a,c,code,sum,today,cpt)) = newTill(a, noCard, code, sum,inc(today),cpt)

/* constant for initialisation */
new = newTill(0, noCard, 0, 0, 0, 0)
/* accessors for the card, the code, the required amount,
the counter of pin tests, the local amount, and the current date */
card(newTill(a,c,code,sum,today,cpt)) = c
code(newTill(a,c,code,sum,today,cpt)) = code
sum(newTill(a,c,code,sum,today,cpt)) = sum
counter(newTill(a,c,code,sum,today,cpt)) = cpt
amount(newTill(a,c,code,sum,today,cpt)) = a
date(newTill(a,c,code,sum,today,cpt)) = today

/* compute the message to allow withdraw */
msgValidity(self) = newInfo(id(card(self)), sum(self))

/* pin code control ok, control wrong and wrong after 3 tests */
pinOK(self) = equals(crypt(code(self)), code(card(self))) AND counter(self) <= 3
retry(self) = not equals(crypt(code(self)), code(card(self))) AND counter(self) < 3
fail(self) = not equals(crypt(code(self)), code(card(self))) AND counter(self) >= 3

/* local controls of the till and the card */
check(self) = (sum(self) <= amount(self)) AND

((equals(last(card(self)), date(self))
AND (sum(card(self)) + sum(self) <= max(card(self))))

OR (not equals(last(card(self)), date(self))
AND (sum(self) <= max(card(self)))))

/* acknowledgment from the bank */
ack(self, r) = isOk(r)

Figure 10: The Till Datatype (part II, axioms).
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D2D1

send !MSG

receive ?MSG

MsgConnection

send !top(self):MSG / pop(self)

receive ?m:MSG / push(self,m)

MSG : Sort

Figure 11: The MsgConnection STS.

Sort MsgConnection
Imports Boolean, MSG

Opns
/* generator for connection */
newMsgConnection : Msg -> MsgConnection
/* add a message */
push : MsgConnection x MSG -> MsgConnection
/* remove the message */
pop : MsgConnection -> MsgConnection
/* accessor for the message */
top : MsgConnection -> MSG

Constantes

voidMsg : Msg

Variables

m, m1 : MSG, self, self1 : MsgConnection

Axioms

push(newMsgConnection(m), m1) = newMsgConnection(m1)
top(newMsgConnection(m)) = m
pop(newMsgConnection(m)) = newMsgConnection(voidMsg)

Figure 12: The MsgConnection Data Type.

lock ?Natural ?Ident ?Money reply !Natural !Ack
to BankInterface

DataBase

from BankInterface

BankInterface

Figure 13: The DataBase Interface.

/Users/jroyer/Documents/CAS/CASHPOINT/FIGV2/MsgConnectionSTS.eps
/Users/jroyer/Documents/CAS/CASHPOINT/FIGV2/DataBase.eps
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/ withdraw(self, bi)reply *checked(self, bi, True)

DataBase

reply !Natural !Ack

[not locked(self, id)] lock ?bi ?id ?s / lock(self, bi, id, s)

DB1

lock ?Natural ?Ident ?Money

reply *checked(self, bi, False) / unlock(self, bi)

BankInterface

Figure 14: The DataBase STS.

Sort DataBase
Imports Boolean, Accounts, Informations, Natural, Ident

Opns
/* generator for database */
newDB : Accounts x Informations -> DataBase
/* lock the database */
lock : DataBase x Natural x Ident x Money -> DataBase
/* unlock it */
unlock : DataBase x Natural -> DataBase
/* withdraw and unlock */
withdraw : DataBase x Natural -> DataBase
/* is a client already locked ? */
locked : DataBase x Ident -> Boolean
/* is the client known and with sufficiently enough cash */
checked : DataBase x Natural x Ack -> Boolean

Variables

a, a1 : Accounts; i,i1 : Informations; self, self1 : DataBase;
bi : Natural; id : Ident

Axioms

lock(newDB(a, i), bi, id, s) = newDB(a, cons((bi, id, s), i))
locked(newDB(a, i), id) = isIn(i, id)
checked(newDB(a, i), bi, a1) = (hasKey(i, bi) AND (sum(i, bi) > 0) AND

(a1 = (account(a, client(i, bi)) >= sum(i, bi))))
unlock(newDB(a, i), bi) = newDB(a, remove(i, bi))
withdraw(newDB(a, i), bi)

= newDB(withdraw(a, client(i, bi), sum(i, bi)), remove(i, bi))

Figure 15: The DataBaseDatatype.

/Users/jroyer/Documents/CAS/CASHPOINT/FIGV2/DataBaseSTS.eps
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lock !Natural !Ident !Money

to DataBase from DataBase

get ?Natural ?Ack

from DropMsgConnection

receive ?Info
send !Ack

to DropMsgConnection

DataBase

BankInterface
DropMsgConnection

Figure 16: The BankInterface Interface.

send !ack(self)

 / get(self, a)

[iam(self, bi)] get ?bi ?a

BankInterface

send !Ack

to DropMsgConnection

get ?Natural ?Ack

from DataBase

lock !Natural !Ident !Money
to DataBase

receive ?Info

from DropMsgConnection

lock !ident(self) !client(self) !sum(self)

B1

B2 B3

B4

receive ?i

receive(self, i)

MsgConnection

DataBase

Figure 17: The BankInterface STS.

/Users/jroyer/Documents/CAS/CASHPOINT/FIGV2/BankInterface.eps
/Users/jroyer/Documents/CAS/CASHPOINT/FIGV2/BankInterfaceSTS.eps
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Sort BankInterface
Imports Boolean, Info, Natural, Ident

Opns
/* generator of a bank interface */
newBI : Natural x Ident x Money x Ack -> BankInterface
/* accessor for interface identity */
ident : BankInterface -> Natural
/* accessor for client identity */
client : BankInterface -> Ident
/* accessor for required amount */
sum : BankInterface -> Money
/* accessor for acknowledgment */
ack : BankInterface -> Ack
/* receipt of an information */
receive : BankInterface x Info -> BankInterface
/* receipt of an acknowledgment */
get : BankInterface x Ack -> BankInterface
/* receipt test */
iam : BankInterface x Natural -> Boolean

Variables

self, self1 : BankInterface; a,a1 : Ack; bi, bi1, s, s1 : Natural;
id, id1 : Ident; in : Info

Axioms

ident(newBI(bi, id, s, a), in) = bi
client(newBI(bi, id, s, a), in) = id
sum(newBI(bi, id, s, a), in) = s
ack(newBI(bi, id, s, a), in) = a
receive(newBI(bi, id, s, a), in) = newBI(bi, client(in), sum(in), a)
get(newBI(bi, id, s, a), a1) = newBI(bi, id, s, a1)
iam(self, bi) = equals(ident(self), bi)

Figure 18: The BankInterfaceDatatype.
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askSum *Gsum(self)

pin *Gpin(self)

Client

askSum !Money

C1

getCard ?Card

getCash ?Money pin !PinNumber

putCard !Card

getCard ?c:Card / getCard(self, c)

[hasCard(self)] putCard !card(self) / putCard(self)

getCash ?s:Money / getCash(self, s)

Till

Figure 19: The Client STS.

DB1B1D1D1T1C1

DB1B1D2D1T5C1 < [] -() [] -() [] -() [] -() [] clock() [] -() >

DB1B2D1D1T5C1

< [] -() [] receive(?i) [] send(!top) [] -() [] -() [] -() >

DB1B1D1D1T6C1 < [] -() [] -() [] -() [] -() [] clock() [] -() >

DB1B1D1D1T7C1

< [] -() [] -() [] -() [] -() [] cash(!sum) [] getCash(?s) >

< [] -() [] -() [] -() [] -() [] clock() [] -() >

DB1B3D1D1T5C1

< [notLocked] lock(?biclis) [] lock(!biclis) [] -() [] -() [] -() [] -() >

< [] -() [] -() [] -() [] -() [] clock() [] -() >

DB1B1D1D1T2C1

< [] -() [] -() [] -() [] -() [] insertCard(?c) [hasCard] putCard(!card) >

DB1B1D1D2T5C1

< [] -() [] -() [] -() [] send(!top) [ack] rec(?r) [] -() >

< [] -() [] -() [] -() [] -() [] clock() [] -() >

< [] -() [] -() [] -() [] send(!top) [notAck] rec(?r) [] -() >

DB1B1D1D1T4C1

< [] -() [] -() [] receive(?msg) [] -() [check] send(!msg) [] -() >

< [] -() [] -() [] -() [] -() [] clock() [] -() >

< [] -() [] -() [] -() [] -() [notCheck] i() [] -() >

DB1B1D1D1T3C1

< [] -() [] -() [] -() [] -() [fail] swallowCard() [] -() >

< [] -() [] -() [] -() [] -() [pinOk] getSum(?sum) [] askSum(*Gsum) >

< [] -() [] -() [] -() [] -() [retry] pin(?code) [] pin(*Gpin) >< [] -() [] -() [] -() [] -() [] clock() [] -() >

DB1B4D1D1T5C1

< [] -() [] send(!ack) [] -() [] receive(?msg) [] -() [] -() >

< [] -() [] -() [] -() [] -() [] clock() [] -() >

< [] -() [] -() [] -() [] -() [] giveCard(!card) [] getCard(?card) >

< [] -() [] -() [] -() [] -() [] clock() [] -() >

< [] -() [] -() [] -() [] -() [] pin(?code) [] pin(*Gpin) >

< [] -() [] -() [] -() [] -() [] clock() [] -() >

< [] replyU(*notChecked) [iam] get(?biack) [] -() [] -() [] -() [] -() > < [] reply(*checked) [iam] get(?biack) [] -() [] -() [] -() [] -() >

< [] -() [] -() [] -() [] -() [] clock() [] -() >

Figure 20: The global STS with N=1 (one client and one till).

/Users/jroyer/Documents/CAS/CASHPOINT/FIGV2/ClientSTS.eps
/Users/jroyer/Documents/MONCLAP3/CASH2/GLOBAL/prod1.ps
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(’DB1’, ’B1’, ’D1’, ’D1’, ’T1’, ’C1’)[DB|A: [(1, 2), (2, 2)] I: []| BI 1 0 0 0  0  0 T[2 Card[0 0 0 0 0] 0 0 0 0]  Card[1 2 0 1 0] ]

(’DB1’, ’B1’, ’D1’, ’D1’, ’T1’, ’C1’)[DB|A: [(1, 2), (2, 2)] I: []| BI 1 0 0 0  0  0 T[2 Card[0 0 0 0 0] 0 0 1 0]  Card[1 2 0 1 0] ]

[] -_-_-_-_clock_-(%[[], [], [], [], [], []])

(’DB1’, ’B1’, ’D1’, ’D1’, ’T2’, ’C1’)[DB|A: [(1, 2), (2, 2)] I: []| BI 1 0 0 0  0  0 T[2 Card[1 2 0 1 0] 0 0 1 0]  Card[0 0 0 0 0] ]

[] -_-_-_-_insertCard_putCard(%[[], [], [], [], [<Card.Card instance at 0x5ad440>], []])

(’DB1’, ’B1’, ’D1’, ’D1’, ’T3’, ’C1’)[DB|A: [(1, 2), (2, 2)] I: []| BI 1 0 0 0  0  0 T[2 Card[1 2 0 1 0] 1 0 1 1]  Card[0 0 0 0 0] ]

[] -_-_-_-_pin_pin(%[[], [], [], [], [1], [1]])

(’DB1’, ’B1’, ’D1’, ’D1’, ’T4’, ’C1’)[DB|A: [(1, 2), (2, 2)] I: []| BI 1 0 0 0  0  0 T[2 Card[1 2 0 1 0] 1 1 1 1]  Card[0 0 0 0 0] ]

[] -_-_-_-_getSum_askSum(%[[], [], [], [], [1], [1]])

(’DB1’, ’B1’, ’D2’, ’D1’, ’T5’, ’C1’)[DB|A: [(1, 2), (2, 2)] I: []| BI 1 0 0 0  (1, 1)  0 T[2 Card[1 2 0 1 0] 1 1 1 1]  Card[0 0 0 0 0] ]

[] -_-_receive_-_send_-(%[[], [], [(1, 1)], [], [], []])

(’DB1’, ’B2’, ’D1’, ’D1’, ’T5’, ’C1’)[DB|A: [(1, 2), (2, 2)] I: []| BI 1 1 1 0  0  0 T[2 Card[1 2 0 1 0] 1 1 1 1]  Card[0 0 0 0 0] ]

[] -_receive_send_-_-_-(%[[], [(1, 1)], [], [], [], []])

(’DB1’, ’B3’, ’D1’, ’D1’, ’T5’, ’C1’)[DB|A: [(1, 2), (2, 2)] I: [(1, 1, 1)]| BI 1 1 1 0  0  0 T[2 Card[1 2 0 1 0] 1 1 1 1]  Card[0 0 0 0 0] ]

[] lock_lock_-_-_-_-(%[[1, 1, 1], [], [], [], [], []])

(’DB1’, ’B4’, ’D1’, ’D1’, ’T5’, ’C1’)[DB|A: [(1, 1), (2, 2)] I: []| BI 1 1 1 True  0  0 T[2 Card[1 2 0 1 0] 1 1 1 1]  Card[0 0 0 0 0] ]

[] reply_get_-_-_-_-(%[[1, True], [1, True], [], [], [], []])

(’DB1’, ’B1’, ’D1’, ’D2’, ’T5’, ’C1’)[DB|A: [(1, 1), (2, 2)] I: []| BI 1 1 1 True  0  True T[2 Card[1 2 0 1 0] 1 1 1 1]  Card[0 0 0 0 0] ]

[] -_send_-_receive_-_-(%[[], [], [], [True], [], []])

(’DB1’, ’B1’, ’D1’, ’D1’, ’T6’, ’C1’)[DB|A: [(1, 1), (2, 2)] I: []| BI 1 1 1 True  0  0 T[2 Card[1 2 0 1 0] 1 1 1 1]  Card[0 0 0 0 0] ]

[] -_-_-_send_rec_-(%[[], [], [], [], [True], []])

(’DB1’, ’B1’, ’D1’, ’D1’, ’T7’, ’C1’)[DB|A: [(1, 1), (2, 2)] I: []| BI 1 1 1 True  0  0 T[1 Card[1 2 1 1 1] 1 1 1 1]  Card[0 0 0 0 0] ]

[] -_-_-_-_cash_getCash(%[[], [], [], [], [], [1]])

(’DB1’, ’B1’, ’D1’, ’D1’, ’T1’, ’C1’)[DB|A: [(1, 1), (2, 2)] I: []| BI 1 1 1 True  0  0 T[1 Card[0 0 0 0 0] 1 1 1 1]  Card[1 2 1 1 1] ]

[] -_-_-_-_giveCard_getCard(%[[], [], [], [], [], [<Card.Card instance at 0x73c698>]])

(’DB1’, ’B1’, ’D1’, ’D1’, ’T2’, ’C1’)[DB|A: [(1, 1), (2, 2)] I: []| BI 1 1 1 True  0  0 T[1 Card[1 2 1 1 1] 0 1 1 0]  Card[0 0 0 0 0] ]

[] -_-_-_-_insertCard_putCard(%[[], [], [], [], [<Card.Card instance at 0x73c698>], []])

(’DB1’, ’B1’, ’D1’, ’D1’, ’T3’, ’C1’)[DB|A: [(1, 1), (2, 2)] I: []| BI 1 1 1 True  0  0 T[1 Card[1 2 1 1 1] 0 1 1 1]  Card[0 0 0 0 0] ]

[] -_-_-_-_pin_pin(%[[], [], [], [], [0], [0]])

(’DB1’, ’B1’, ’D1’, ’D1’, ’T3’, ’C1’)[DB|A: [(1, 1), (2, 2)] I: []| BI 1 1 1 True  0  0 T[1 Card[1 2 1 1 1] 0 1 1 2]  Card[0 0 0 0 0] ]

[] -_-_-_-_pin_pin(%[[], [], [], [], [0], [0]])

(’DB1’, ’B1’, ’D1’, ’D1’, ’T3’, ’C1’)[DB|A: [(1, 1), (2, 2)] I: []| BI 1 1 1 True  0  0 T[1 Card[1 2 1 1 1] 0 1 1 3]  Card[0 0 0 0 0] ]

[] -_-_-_-_pin_pin(%[[], [], [], [], [0], [0]])

(’DB1’, ’B1’, ’D1’, ’D1’, ’T1’, ’C1’)[DB|A: [(1, 1), (2, 2)] I: []| BI 1 1 1 True  0  0 T[1 Card[0 0 0 0 0] 0 1 1 3]  Card[0 0 0 0 0] ]

[] -_-_-_-_swallowCard_-(%[[], [], [], [], [], []])

Figure 21: A Graphic Trace Example, Data Description
Data: [Database BankInterface MsgConnection MsgConnection Till Client]

/Users/jroyer/Documents/MONCLAP3/CASH2/GLOBAL/trace.ps
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RUN
 / i := 0

[i >= 0]

/ i := i+1
emit WORK

IDLE

[j > 0]
sync

/ j := M

[j >= 1]
get
/ j := j−1

(RUN,IDLE)

(RUN,WORK)

(emit,get)

[j>0]
(  ,sync)τ

/ (i := i+1, j := j−1)

/ (i := 0, j := M)

[i>=0 /\ j>=1]

Figure 22: A Finite State System Example and Its Product

(b)

Configuration
Graphs

Configuration
Graph

STSs STS
synchronous product

synchronous product

unfolding unfolding

(a)

Figure 23: Relating STS and Model-Checking

down

up

MsgConnection

send !top(self):MSG / pop(self)

receive ?m:MSG / push(self,m)

DropMsgConnection

send !MSG

receive ?MSG

MSG : Sort

MSG : Sort

down

up down / pop(self)

up
/ push(self,m)receive ?m:MSG

/ pop(self)send !top(self):MSG

Figure 24: The MsgConnection and DropMsgConnection STS.

/Users/jroyer/Documents/PAPIERS/DIVERS/SPIN06/BORNE2/newLeft2.eps
/Users/jroyer/Documents/PAPIERS/DIVERS/SPIN06/BORNE2/newRight2.eps
/Users/jroyer/Documents/PAPIERS/DIVERS/SPIN06/BORNE2/newLeftRight.eps
/Users/jroyer/Documents/CAS/CASHPOINT/FIGV2/ideeSTS.eps
/Users/jroyer/Documents/CAS/CASHPOINT/FIGV2/DropMsgConnectionC_v2.eps
/Users/jroyer/Documents/CAS/CASHPOINT/FIGV2/DropMsgConnectionCSTS_v2.eps
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Sort DropMsgConnection
Imports Boolean, MSG

Opns
/* generator constructors (related to transitions) */
newDropMsgConnection : Msg -> DropMsgConnection
/* other constructors (related to transitions) */
push : DropMsgConnection, MSG -> DropMsgConnection
pop : DropMsgConnection -> DropMsgConnection
up : DropMsgConnection -> DropMsgConnection
down : DropMsgConnection -> DropMsgConnection
/* observers */
top : DropMsgConnection -> MSG
/* equality */
equals : DropMsgConnection, DropMsgConnection -> Bool

Constantes

voidMsg : Msg

Variables

m, m1 : MSG, self, self1 : DropMsgConnection

Axioms

top(newDropMsgConnection(m)) = m
push(newDropMsgConnection(m), m1) = newDropMsgConnection(m1))
pop(newDropMsgConnection(m)) = newDropMsgConnection(voidMsg)
down(newDropMsgConnection(m)) = newDropMsgConnection(voidMsg)
up(newDropMsgConnection(voidMsg)) = newDropMsgConnection(voidMsg)

/* equality */
equals(newDropMsgConnection(m), newDropMsgConnection(m1)) = equals(m, m1)

Figure 25: The DropMsgConnectionData Type.





INFORMATIQUE, BIOLOGIE INTÉGRATIVE ET SYSTÈMES COMPLEXES

KADL Specification of The Cash Point
Case Study

Pascal Poizat, Jean-Claude Royer

Abstract

This report presents the cash-point case study and mainly describes its specifications with the KADL
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