
Prototype Prolog API for Mindstorms NXT?

Grzegorz J. Nalepa1

Institute of Automatics,
AGH University of Science and Technology,
Al. Mickiewicza 30, 30-059 Kraków, Poland

gjn@agh.edu.pl

Abstract. The paper presents a pure Prolog-based API for controlling
the LEGO Mindstorms NXT robot platform. In the paper the design as
well the implementation is described, with an example algorithm pre-
sented. The API uses a multilayer architecture, composed of a behav-
ioral, sensomotoric, and connection layer. This platform can be used as
a generic solution for programming the NXT in Prolog. It also serves as
a foundation for a higher-level visual rule-based programming within the
XTT knowledge representation.

1 Introduction and Motivation

Building intelligent robots [1] has always been one of the most important areas
of both pursuit and research in Arti�cial Intelligence [2], and applied engineer-
ing. Creating such robots requires skills from di�erent domains, including deep
knowledge of materials and mechanics [3], as well as control theory, arti�cial in-
telligence, computer science, and even psychology and linguistics, when we take
human-machine communication into account. However, these days the �eld be-
came much more accessible to non-experts, thanks to number of ready robotics
solutions. These include some ready robots, that can be bought and trained,
e.g. SONY Aibo, or iRobot Roomba. Recently, a new release from the LEGO
company improved this situation even further.

LEGO Mindstorms NXT is a universal robotics platform, that o�ers ad-
vanced robot construction possibilities, as well as sophisticated programming
solutions [4]. It is composed of an embedded computer called the brick, includ-
ing Bluetooth wireless communication and USB port. The NXT has a set of
three actuators (servo motors), and a set of sensors, including the touch, sound,
light, and ultrasonic sensor. The whole mechanical aspect is solved by the well-
established LEGO bricks system.

NXT is a platform with an open speci�cation, since LEGO released virtually
all of the documentation, including the brick �rmware and protocols descrip-
tion. When it comes to programming, LEGO o�ers a visual programming envi-
ronment, that allows for algorithm synthesis using simple �owchart-like visual

? The paper is supported by the Hekate Project funded from 2007�2009 resources for
science as a research project.



language. Thanks to the openness of the platform number of open programming
solutions emerged, for languages such as C and C++, Java, etc.

While numerous programming solutions exist, they fail to provide a clean
high-level declarative programming solution for NXT. Programming robots, es-
pecially mobile ones, is a complex task, involving some typical AI problems, such
as knowledge representation and processing, planning, etc. These areas are much
more accessible with the use of a declarative programming solutions, compared
to classic, low-level imperative languages.

The paper presents research developed within the HeKatE project (hekate.
ia.agh.du.pl) aimed at providing a high-level rule-based programming solution
for Mindstorms NXT, based on the Prolog language API for the NXT platform.
In the paper the requirements for the API are given in Sect. 3. The design of
the API is discussed in Sect. 4, with a prototype implementation introduced in
Sect. 5. A simple example using this API is presented in Sect. 6 Future work is
proposed in Sect. 7.

2 NXT Programming Approaches

Since NXT is a well established open platform, number of programming solutions
exist. From the runtime point of view, these solutions can be categorized into
solutions that: communicate with the Brick using the LEGO protocol [5], provide
a higher level language that compiles to Brick bytecode [6], replace the Brick
�rmware with a custom one.

The �rst approach is a simple, clean and straightforward one. The examples
of the �rst group include LeJOS iCommand http://lejos.sourceforge.net,
or NXT++ http://nxtpp.sourceforge.net/. The second approach requires a
dedicated complier, which makes it more complicated. In the second group there
exists number of solutions including NQC (http://bricxcc.sourceforge.net/
nqc). The third solution is the most complicated one, since it requires developing
a dedicated embedded operating system. This type of solution is provided by the
Java-based LeJOS http://lejos.sourceforge.net.

Another �exible approach to robot programming is to use a high-level declar-
ative language such as Prolog instead of low-level C-like, or Java-based pro-
gramming. Some early attempts are within the LegoLog Project (http://www.
cs.toronto.edu/cogrobo/Legolog) Unfortunately the project did not o�er a
general API, and supported only the older Mindstorms RCX version.

Besides basic programming languages, NXT robot programming can be sup-
ported on a higher logical level, o�ering a visual logic representation. The prime
example is the default LEGO environment. Similar solutions are provided by
LabView-based environment, as well as Microsoft Robotic Studio. In these cases
the control logic is represented with use of �owcharts representing the control
algorithm. However, this is mainly a procedural representation.

A step further in this direction is to use more advance knowledge represen-

tation methods form the classic AI, such as the decision rules, and/or decision
trees. Within the HeKatE Project (see hekate.ia.agh.edu.pl), an advanced



knowledge representation method for forward-chaining rule-based systems is be-
ing developed. The eXtended Tabular Trees concept o�ers a generic rule-based
visual programming solution, combining the power of decision tables and decision
trees, see [7]. XTT is implemented with the use of a Prolog-based inference en-
gine. Providing a Prolog-based API for Mindstorms NXT would allow to develop
control logic for NXT robots with the use of the XTT method. The requirements
for such a platform are presented in the next section.

3 New Platform Requirements

Basing on the review of existing solutions presented above, the requirements of
a new Prolog API for NXT has been formulated. The main requirements are:

� support for all functions of the standard NXT components, that is sensors
and motors,

� crossplatform solution, for both Windows and GNU/Linux environments,
� reuse some of the available solutions, and provide compatibility where pos-
sible,

� ultimately integrate with the higher XTT layer.

The whole platform based on this new Prolog API is planned as presented in
Fig. 1. In the �gure the highest visual rule-based logic design with XTT is also
included. The focus of this paper is the design and prototype of the Prolog API
layer, indicated in the �gure by the dotted line.

In order to reuse and support some of the existing solutions, as well as provide
implementation �exibility, it's been decided to provide in the �rst stage a Prolog
library, with the following features: it is executed on a PC, controlling an NXT-
based robot, the control is performed with the use of the Bluetooth or USB cable
connection, the low-level communication is provided by some well-tested existing
communications modules, at the functional level the API is coherent with other
available solutions. A more detailed design of this API is presented next.

4 Prolog NXT API Design

Considering the requirements the following API architecture has been designed.
It is composed of three main layers as observed in the Fig. 1.

communication layer providing the low-level communication with the robot,
sensomotoric layer allowing the exchange information with sensors and mo-

tors,
behavioral layer providing a higher-level functions, e.g. drive.

The behavioral layer exposes to the programmer some high level functions
and services. It provides abstract robot control functions, such as go, or turn.
Ultimately a full navigation support for di�erent robots is to be provided. (How-
ever, di�erent robot con�gurations require di�erent control logic)



The sensomotoric layer controls the components of the Mindstorms NXT set
motors, all the sensors, as well as Brick functions. This layer can be used to
directly read the sensors, as well as program the motors. This is a layer, that
can be used by a programmer to enhance high-level behavioral functions.

The goal of the communication layer is to execute the actions of the sen-
somotoric layer and communicate with the NXT Brick. Currently in this layer
several modules are present, providing di�erent means of communication:

� a pure Prolog module, using a serial port communication, and the NXT
protocol commands,

� a hybrid solution based on the Java-based iCommand library,
� a hybrid socket-based solution, using the NXT++ library, that communi-
cates with the robot.

All of these actually wrap the Mindstorms NXT Communication Protocol [5].
The �rst solution is the most straight forward one. In this case standard

ISO Prolog stream predicates can be used to control the serial port. Prolog
terms that wrap the NXT protocol have to be provided. In the second case the
Prolog communication module is integrated with iCommand with the use of
the SWI Java to Prolog interface called JPL. Prolog calls are mapped to the
iCommand methods. In the third case, a simple server written in C++ exposes
NXT communication with a TCP socket. The Prolog communication module
connects to the server and controls the robot through a TCP connection. This
opens up a possibility of a remote control, where the controlling logic is run on
another machine, or even machines.

Besides some basic send/receive functions the library has to provide certain
services. These are event and time-based callback. For example, it should be
possible to instruct the robot to e.g. �drive till you hit/approach an obstacle,
then make a sound, wait for a response for some time, if you don't get one, turn
and drive on� So the library has to provide timers that trigger some callbacks, as
well as event-driven callbacks. This requires parallel execution of certain threads.

5 Prototype Implementation

Currently a prototype implementation of the API is available. The prototype
includes all three layers as shown in Fig. 1. Currently in the highest layer the
movement functions are implemented. The mid layer provides full control over
robot's sensors and motors. It also exposes timer and event services. In the low-
level communication layer, the iCommand, DirectSerial, and NXT++ commu-
nication modules are implemented. Current implementation for the SWI-Prolog
environment (www.swi-prolog.org) has been provided by Masters students: Pi-
otr Hoªlownia [8], with help of Paweª Gutowski [9] and Marcin Zioªkowski [10].
For the full information see https://ai.ia.agh.edu.pl/wiki/mindstorms:

nxt_prolog_api.
Below some excerpts of Prolog code for the highest layer are presented, in-

cluding selected setup and movement predicates.



SocketiCommandProlog

Communication

SensoMotoric

Behavioral

Mindstorms NXT

Remote PC

PC hardware

XTT

TCP

P
r
o
l
o
g
 
N
X
T
 
A
P
I

logic

control

Prolog

XTT2Prolog

Fig. 1. Prolog NXT API Design

nxt_set_robot(WheelCircumference,AxleLenght,LeftMotor,RightMotor,

Reverse,TouchPort,SoundPort,LightPort,UltrasonicPort) :-

nonvar(WheelCircumference),nonvar(AxleLenght),

nonvar(LeftMotor),nonvar(RightMotor),nonvar(Reverse),

retractall(nxt_robot(_,_,_,_,_,_,_,_,_)),

assert(nxt_robot(WheelCircumference,AxleLenght,LeftMotor,RightMotor,

Reverse,TouchPort,SoundPort,LightPort,UltrasonicPort)).

nxt_stop :-

nxt_robot(_,_,LM,RM,_,_,_,_,_), nxt_motor(LM,0), nxt_motor(RM,0).

nxt_go(Speed) :-

nxt_robot(_,_,_,_,_,TouchP,_,_,_),

nxt_go(Speed,force),

trigger_create(_,nxt_sensomoto:nxt_touch_sensor(TouchP,1),nxt_stop).

nxt_go(Speed,force) :-

Speed \= 0, nxt_robot(_,_,LM,RM,_,_,_,_,_),

nxt_motor(LM,Speed), nxt_motor(RM,Speed).

nxt_go(Speed,Angle) :-

nxt_robot(_,_,_,_,_,TouchP,_,_,_), nxt_go(Speed,Angle,force),

trigger_create(_,nxt_sensomoto:nxt_touch_sensor(TouchP,1),nxt_stop).

nxt_go(Speed,Angle,force) :-

nxt_robot(_,_,LM,RM,_,_,_,_,_),

nxt_motor(LM,Speed,Angle), nxt_motor(RM,Speed,Angle).

nxt_go_cm(Speed,Distance) :-

nxt_robot(WC,_,_,_,_,_,_,_,_), Angle is round(Distance/WC*360),

nxt_go(Speed,Angle).

nxt_go_cm(Speed,Distance,force) :-

nxt_robot(WC,_,_,_,_,_,_,_,_), Angle is round(Distance/WC*360),

nxt_go(Speed,Angle,force).

nxt_turn(Speed,Angle) :-



Angle > 0, nxt_robot(_,_,LM,RM,_,_,_,_,_),

nxt_motor(LM,-Speed,Angle), nxt_motor(RM,Speed,Angle).

nxt_turn(Speed,Angle) :-

Angle < 0, nxt_robot(_,_,LM,RM,_,_,_,_,_),

MinusAngle is -Angle,

nxt_motor(LM,Speed,MinusAngle), nxt_motor(RM,-Speed,MinusAngle).

The declarative Prolog syntax simpli�es the design of the control logic.
In the main sensomotoric layer Prolog predicates for reading the sensors, as

well as controlling the motors are provided, as shown below.

nxt_motor(_,Speed) :-

nonvar(Speed), Speed > 900, writeln('Rotational speed is to high!').

nxt_motor(_,Speed) :-

nonvar(Speed), Speed < -900, writeln('Rotational speed is to high!').

nxt_motor(Motor,Speed) :-

nonvar(Motor),nonvar(Speed), Speed > 0, nxt_actions_motor_forward(Motor,Speed).

nxt_motor(Motor,Speed) :-

nonvar(Motor),nonvar(Speed), Speed < 0,

BackwardSpeed is -Speed, nxt_actions_motor_backward(Motor,BackwardSpeed).

nxt_motor(Motor,Speed) :-

nonvar(Motor),var(Speed), nxt_actions_motor_get_speed(Motor,Speed).

nxt_motor(Motor,0) :-

nonvar(Motor), nxt_actions_motor_stop(Motor).

nxt_light_sensor(Port,Value) :-

nonvar(Port), nxt_actions_light_sensor(Port,Value).

nxt_light_sensor_LED(Port,Setting) :-

nonvar(Port), nxt_actions_light_sensor_LED(Port,Setting).

Using a single predicate nxt_motor/2 it possible to both set and get the speed
of the motor. Another predicate nxt_motor/3 supports rotating the motor at
the given speed until a speci�ed angle is reached or for the given time.

The event and time-based triggers are provided with the main predicates:
trigger_create/3 which allows for creating an event trigger, and timer_create/3
that creates a time-driven trigger, both can run any Prolog predicate. They use
SWI multithreading capabilities allowing for soft-real time control.

The lowest level communication protocol provides an iCommand-based con-
trol module, that implements get/set commands from the middle layer. It is
implemented using SWI Prolog Java interface called JPL.

nxt_actions_motor_forward(Motor,Speed) :-

jpl_get('icommand.nxt.Motor',Motor,MotorHandle),

jpl_call(MotorHandle,'setSpeed',[Speed],_),

jpl_call(MotorHandle,'forward',[],_).

nxt_actions_motor_backward(Motor,Speed) :-

jpl_get('icommand.nxt.Motor',Motor,MotorHandle),

jpl_call(MotorHandle,'setSpeed',[Speed],_),

jpl_call(MotorHandle,'backward',[],_).

nxt_actions_motor_get_speed(Motor,Speed) :-

jpl_get('icommand.nxt.Motor', Motor, MotorHandle),



jpl_call(MotorHandle, 'getSpeed', [], Speed).

nxt_actions_motor_stop(Motor) :-

jpl_get('icommand.nxt.Motor',Motor,MotorHandle),

jpl_call(MotorHandle,'stop',[],_),

jpl_call(MotorHandle,'setSpeed',[0],_).

nxt_actions_light_sensor(Port,Value) :-

not(nxt_actions_light_sensor_connected(Port,_)),

retractall(nxt_actions_light_sensor_connected(_,_)),

jpl_get('icommand.nxt.SensorPort',Port,PortHandle),

jpl_new('icommand.nxt.LightSensor',[PortHandle],SensorHandle),

assert(nxt_actions_light_sensor_connected(Port,SensorHandle)),

nxt_actions_light_sensor(_,Value).

nxt_actions_light_sensor(_,Value) :-

nxt_actions_light_sensor_connected(_,SensorHandle),

jpl_call(SensorHandle,'getLightPercent',[],Percent),

Value is Percent.

This solution works �awlessly in both GNU/Linux and Windows environ-
ments. A purely Prolog-based module for serial connection under GNU/Linux is
also being �nalized. This module will be ported to the Windows environment.

Another module wraps the NXT++ (http://nxtpp.sourceforge.net) ex-
posing the robot control through a TCP socket. The low level communication
module connects to the robot using a network connection, and a simple text-
based protocol, representing the original LEGO Protocol [5]. This approach al-
lows for a remote control over a robot, where the controlling host is not directly
connected to the robot. This opens up some �exible control possibilities in a
distributed environment. It is unfortunately out of scope of this paper.

The Prolog API has been successfully tested on number of simple control
algorithms. A selected algorithm is discussed in the following section.

6 Example Algorithm

Below a simple obstacle avoidance algorithm using the API is presented.

state(go_foward). % state(go_step_forward).

start(Thresold) :- nxt_ultrasonic_sensor(Value), Value > Thresold, start_go.

start(Thresold) :- nxt_ultrasonic_sensor(Value), Value =< Thresold, start_turn.

start(_) :- go(0,0,0).

start_go :- state(go_foward), nxt_go(0,speed,force).

start_go :- state(go_step_foward), nxt_go_cm(distance,speed).

start_turn :- state(go_foward), nxt_turn_degrees(90,speed).

start_turn :- state(go_step_foward), nxt_turn_degrees(-90,speed).

7 Future Work

The original contribution of this paper is the pure Prolog API for controlling the
LEGO Mindstorms NXT robot platform. It can be used as a generic solution



Fig. 2. Rule-based XTT representation of the control algorithm

for programming the NXT in Prolog. It also serves as a foundation for a higher-
level visual rule-based programming within the XTT knowledge representation.
While this is a ready solution, there are some directions for future work.

Extending the behavioral layer is an important direction. The current im-
plementation is mainly focused on simple mobile robots. A robot con�guration
abstraction layer is in the works. It would allow to de�ne di�erent types of robots.

An ultimate goal is to to provide an integration layer with the visual al-
gorithm design with the XTT knowledge representation. Such a design of the
example discussed in Sect. 6 is shown in Fig. 2. Since the XTT interpreter is built
with Prolog, this is just a matter of time and experiments. This would provide a
complete open robot design environment based on the rule-based programming.

References

1. Holland, J.M.: Designing Mobile Autonomous Robots. Elsevier (2004)
2. Russell, S., Norvig, P.: Arti�cial Intelligence: A Modern Approach. 2nd edn.

Prentice-Hall (2003)
3. Craig, J.J.: Introduction to Robotics: Mechanics and Control. 3rd edn. Prentice

Hall (2004)
4. Mario Ferrari, Guilio Ferrari, D.A.: Building Robots with LEGO Mindstorms

NXT. Syngress (2007)
5. The LEGO Group: LEGO MINDSTORMS NXT Communication Protocol. (2006)
6. The LEGO Group: LEGO MINDSTORMS NXT Executable File Speci�cation.

(2006)
7. Nalepa, G.J., Lig¦za, A.: A graphical tabular model for rule-based logic program-

ming and veri�cation. Systems Science 31(2) (2005) 89�95
8. Hoªlownia, P.: Mindstorms nxt prolog api prototype. Knowledge Engineering

Project (MIW), G. J. Nalepa supervisor (2008)
9. Gutowski, P.: Mindstorms nxt prolog api prototype, icommand module. Knowledge

Engineering Project (MIW), G. J. Nalepa supervisor (2008)
10. Zioªkowski, M.: Mindstorms nxt prolog api prototype, socket module. Knowledge

Engineering Project (MIW), G. J. Nalepa supervisor (2008)


